nnUNet在M1/M2芯片Mac设备上的3D转置卷积问题解决方案
背景介绍
nnUNet作为医学图像分割领域的标杆性框架,其3D版本在各类医学影像分析任务中表现出色。然而,当用户尝试在配备M1/M2芯片的Mac设备上运行nnUNet进行3D医学图像分割推理时,会遇到一个关键的技术障碍——PyTorch的MPS后端目前尚未支持3D转置卷积(ConvTranspose3D)操作。
问题本质分析
3D转置卷积是nnUNet等3D卷积神经网络架构中不可或缺的组件,特别是在解码器路径中进行特征图上采样时。当PyTorch检测到运行环境为Apple Silicon芯片时,会默认尝试使用Metal Performance Shaders(MPS)后端来加速计算,但当前官方版本(截至发稿时)的MPS后端确实缺少对3D转置卷积的支持。
解决方案详解
经过技术社区的探索,目前可行的解决方案是使用经过修改的PyTorch分支版本。这个分支基于PyTorch官方代码,但包含了针对MPS设备的3D转置卷积实现。具体实施步骤如下:
-
环境准备:确保系统已安装最新版本的CMake和Ninja构建工具。对于Mac用户,可以通过Homebrew安装:
brew install cmake ninja -
安装定制版PyTorch:使用以下命令安装支持MPS 3D转置卷积的PyTorch分支:
pip install git+https://github.com/LalithShiyam/pytorch-mps.git -
验证安装:安装完成后,可以在Python环境中测试3D转置卷积是否正常工作:
import torch conv = torch.nn.ConvTranspose3d(16, 32, kernel_size=3, stride=2, padding=1) x = torch.randn(1, 16, 32, 32, 32, device='mps') y = conv(x) # 应该能正常执行
性能表现
根据用户反馈,在使用这个解决方案后,nnUNet在M2芯片的MacBook Air上能够顺利完成推理任务。以一个包含5折交叉验证的模型为例,完整推理过程耗时约38秒,展现了Apple Silicon芯片在深度学习推理任务中的潜力。
未来展望
虽然当前解决方案有效,但仍属于临时性措施。随着PyTorch官方对MPS后端的持续完善,预计未来版本将原生支持3D转置卷积操作。届时用户可以直接使用官方PyTorch版本,无需再依赖定制分支。
注意事项
- 该解决方案目前仅针对推理(inference)场景验证有效,训练场景下的稳定性尚未得到广泛验证。
- 使用定制分支可能存在与其他库的兼容性问题,建议在虚拟环境中安装。
- 如果遇到构建问题,请检查CMake和Ninja的版本及安装路径是否正确。
通过上述方案,研究人员和开发者现在可以在Apple Silicon设备上充分利用nnUNet的强大功能进行3D医学图像分析,为移动端和边缘计算场景下的医学影像处理开辟了新可能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00