nnUNet在M1/M2芯片Mac设备上的3D转置卷积问题解决方案
背景介绍
nnUNet作为医学图像分割领域的标杆性框架,其3D版本在各类医学影像分析任务中表现出色。然而,当用户尝试在配备M1/M2芯片的Mac设备上运行nnUNet进行3D医学图像分割推理时,会遇到一个关键的技术障碍——PyTorch的MPS后端目前尚未支持3D转置卷积(ConvTranspose3D)操作。
问题本质分析
3D转置卷积是nnUNet等3D卷积神经网络架构中不可或缺的组件,特别是在解码器路径中进行特征图上采样时。当PyTorch检测到运行环境为Apple Silicon芯片时,会默认尝试使用Metal Performance Shaders(MPS)后端来加速计算,但当前官方版本(截至发稿时)的MPS后端确实缺少对3D转置卷积的支持。
解决方案详解
经过技术社区的探索,目前可行的解决方案是使用经过修改的PyTorch分支版本。这个分支基于PyTorch官方代码,但包含了针对MPS设备的3D转置卷积实现。具体实施步骤如下:
-
环境准备:确保系统已安装最新版本的CMake和Ninja构建工具。对于Mac用户,可以通过Homebrew安装:
brew install cmake ninja -
安装定制版PyTorch:使用以下命令安装支持MPS 3D转置卷积的PyTorch分支:
pip install git+https://github.com/LalithShiyam/pytorch-mps.git -
验证安装:安装完成后,可以在Python环境中测试3D转置卷积是否正常工作:
import torch conv = torch.nn.ConvTranspose3d(16, 32, kernel_size=3, stride=2, padding=1) x = torch.randn(1, 16, 32, 32, 32, device='mps') y = conv(x) # 应该能正常执行
性能表现
根据用户反馈,在使用这个解决方案后,nnUNet在M2芯片的MacBook Air上能够顺利完成推理任务。以一个包含5折交叉验证的模型为例,完整推理过程耗时约38秒,展现了Apple Silicon芯片在深度学习推理任务中的潜力。
未来展望
虽然当前解决方案有效,但仍属于临时性措施。随着PyTorch官方对MPS后端的持续完善,预计未来版本将原生支持3D转置卷积操作。届时用户可以直接使用官方PyTorch版本,无需再依赖定制分支。
注意事项
- 该解决方案目前仅针对推理(inference)场景验证有效,训练场景下的稳定性尚未得到广泛验证。
- 使用定制分支可能存在与其他库的兼容性问题,建议在虚拟环境中安装。
- 如果遇到构建问题,请检查CMake和Ninja的版本及安装路径是否正确。
通过上述方案,研究人员和开发者现在可以在Apple Silicon设备上充分利用nnUNet的强大功能进行3D医学图像分析,为移动端和边缘计算场景下的医学影像处理开辟了新可能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00