Fast-SRGAN 项目使用教程
2024-09-17 05:53:00作者:胡唯隽
1. 项目目录结构及介绍
Fast-SRGAN 项目的目录结构如下:
Fast-SRGAN/
├── configs/
│ └── config.yaml
├── models/
│ └── pretrained_generator.h5
├── .gitignore
├── LICENSE
├── Pipfile
├── Pipfile.lock
├── README.md
├── dataloader.py
├── inference.py
├── model.py
├── train.py
└── trainer.py
目录结构介绍
- configs/: 包含项目的配置文件
config.yaml
,用于定义训练和推理的参数。 - models/: 包含预训练的生成器模型文件
pretrained_generator.h5
。 - .gitignore: Git 忽略文件,指定哪些文件和目录不需要被 Git 管理。
- LICENSE: 项目的开源许可证文件。
- Pipfile: 项目依赖管理文件,使用 Pipenv 进行依赖管理。
- Pipfile.lock: Pipenv 生成的锁定文件,确保依赖版本一致性。
- README.md: 项目的说明文档,包含项目的基本介绍和使用方法。
- dataloader.py: 数据加载器脚本,用于加载训练和推理所需的数据。
- inference.py: 推理脚本,用于对图像进行超分辨率处理。
- model.py: 模型定义脚本,包含生成器和判别器的定义。
- train.py: 训练脚本,用于训练超分辨率模型。
- trainer.py: 训练器脚本,包含训练过程的具体实现。
2. 项目的启动文件介绍
2.1 inference.py
inference.py
是用于推理的启动文件,可以通过以下命令运行:
python inference.py --image_dir 'path/to/your/image/directory' --output_dir 'path/to/save/super/resolution/images'
参数说明
--image_dir
: 指定输入图像的目录路径。--output_dir
: 指定输出超分辨率图像的保存目录路径。
2.2 train.py
train.py
是用于训练模型的启动文件,可以通过以下命令运行:
python train.py
参数说明
data.image_dir
: 指定训练数据的目录路径。training.batch_size
: 指定训练批次大小。generator.n_layers
: 指定生成器模型的层数。
3. 项目的配置文件介绍
3.1 configs/config.yaml
config.yaml
是项目的配置文件,包含了训练和推理过程中所需的参数配置。以下是配置文件的部分内容示例:
data:
image_dir: "/path/to/image/dataset"
training:
batch_size: 16
epochs: 100
save_every: 10
generator:
n_layers: 8
filters: 64
discriminator:
n_layers: 3
filters: 64
配置项说明
- data.image_dir: 训练数据的目录路径。
- training.batch_size: 训练批次大小。
- training.epochs: 训练轮数。
- training.save_every: 每隔多少轮保存一次模型。
- generator.n_layers: 生成器模型的层数。
- generator.filters: 生成器模型的滤波器数量。
- discriminator.n_layers: 判别器模型的层数。
- discriminator.filters: 判别器模型的滤波器数量。
通过修改 config.yaml
文件中的参数,可以自定义训练和推理的行为。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0328- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3