Fast-SRGAN 项目使用教程
2024-09-17 05:53:00作者:胡唯隽
1. 项目目录结构及介绍
Fast-SRGAN 项目的目录结构如下:
Fast-SRGAN/
├── configs/
│ └── config.yaml
├── models/
│ └── pretrained_generator.h5
├── .gitignore
├── LICENSE
├── Pipfile
├── Pipfile.lock
├── README.md
├── dataloader.py
├── inference.py
├── model.py
├── train.py
└── trainer.py
目录结构介绍
- configs/: 包含项目的配置文件
config.yaml
,用于定义训练和推理的参数。 - models/: 包含预训练的生成器模型文件
pretrained_generator.h5
。 - .gitignore: Git 忽略文件,指定哪些文件和目录不需要被 Git 管理。
- LICENSE: 项目的开源许可证文件。
- Pipfile: 项目依赖管理文件,使用 Pipenv 进行依赖管理。
- Pipfile.lock: Pipenv 生成的锁定文件,确保依赖版本一致性。
- README.md: 项目的说明文档,包含项目的基本介绍和使用方法。
- dataloader.py: 数据加载器脚本,用于加载训练和推理所需的数据。
- inference.py: 推理脚本,用于对图像进行超分辨率处理。
- model.py: 模型定义脚本,包含生成器和判别器的定义。
- train.py: 训练脚本,用于训练超分辨率模型。
- trainer.py: 训练器脚本,包含训练过程的具体实现。
2. 项目的启动文件介绍
2.1 inference.py
inference.py
是用于推理的启动文件,可以通过以下命令运行:
python inference.py --image_dir 'path/to/your/image/directory' --output_dir 'path/to/save/super/resolution/images'
参数说明
--image_dir
: 指定输入图像的目录路径。--output_dir
: 指定输出超分辨率图像的保存目录路径。
2.2 train.py
train.py
是用于训练模型的启动文件,可以通过以下命令运行:
python train.py
参数说明
data.image_dir
: 指定训练数据的目录路径。training.batch_size
: 指定训练批次大小。generator.n_layers
: 指定生成器模型的层数。
3. 项目的配置文件介绍
3.1 configs/config.yaml
config.yaml
是项目的配置文件,包含了训练和推理过程中所需的参数配置。以下是配置文件的部分内容示例:
data:
image_dir: "/path/to/image/dataset"
training:
batch_size: 16
epochs: 100
save_every: 10
generator:
n_layers: 8
filters: 64
discriminator:
n_layers: 3
filters: 64
配置项说明
- data.image_dir: 训练数据的目录路径。
- training.batch_size: 训练批次大小。
- training.epochs: 训练轮数。
- training.save_every: 每隔多少轮保存一次模型。
- generator.n_layers: 生成器模型的层数。
- generator.filters: 生成器模型的滤波器数量。
- discriminator.n_layers: 判别器模型的层数。
- discriminator.filters: 判别器模型的滤波器数量。
通过修改 config.yaml
文件中的参数,可以自定义训练和推理的行为。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
509
44

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K

React Native鸿蒙化仓库
C++
194
279