Fast-TransX 开源项目使用教程
1. 项目介绍
Fast-TransX 是一个高效的实现 TransE 及其扩展模型的开源项目,用于知识表示学习(Knowledge Representation Learning, KRL)。该项目基于 THU-OpenSK 框架,提供了对 TransE、TransH、TransR、TransD、TranSparse 等模型的快速实现。Fast-TransX 通过多线程训练和底层优化,显著提升了训练速度,适用于大规模知识图谱的嵌入学习。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- C++ 编译器(如 g++)
- Python 3.x
2.2 克隆项目
git clone https://github.com/thunlp/Fast-TransX.git
cd Fast-TransX
2.3 编译项目
g++ transX.cpp -o transX -pthread -O3 -march=native
g++ test_transX.cpp -o test_transX -pthread -O3 -march=native
2.4 数据准备
Fast-TransX 需要特定的数据格式,包括 entity2id.txt
、relation2id.txt
和 train2id.txt
。你可以使用提供的 FB15K 和 WN18 数据集,或者按照以下格式准备自己的数据集:
entity2id.txt
: 实体及其对应 ID,第一行为实体数量。relation2id.txt
: 关系及其对应 ID,第一行为关系数量。train2id.txt
: 训练三元组,第一行为三元组数量,后续每行为一个三元组 (e1, e2, rel)。
2.5 训练模型
./transX -size 50 -input ./data/FB15K -output ./output -thread 8 -epochs 1000
2.6 测试模型
./test_transX -size 50 -input ./data/FB15K -init ./output -thread 8
3. 应用案例和最佳实践
3.1 知识图谱补全
Fast-TransX 可以用于知识图谱的补全任务,通过学习实体和关系的嵌入表示,预测缺失的三元组。例如,在 FB15K 数据集上,Fast-TransE 模型在过滤后的 MeanRank 和 Hit@10 指标上表现优异。
3.2 多线程加速
Fast-TransX 支持多线程训练,通过设置 -thread
参数,可以显著减少训练时间。例如,在 8 线程下,Fast-TransE 在 FB15K 数据集上的训练时间从 3587 秒减少到 42 秒。
4. 典型生态项目
4.1 OpenKE-PyTorch
OpenKE-PyTorch 是基于 PyTorch 的知识表示学习框架,提供了对 RESCAL、DistMult、ComplEx、TransE 等模型的实现。Fast-TransX 可以作为 OpenKE-PyTorch 的轻量级 C++ 推理组件,提升推理效率。
4.2 TensorFlow-TransX
TensorFlow-TransX 是基于 TensorFlow 的轻量级知识表示学习框架,包括 TransE、TransH、TransR 和 TransD 等模型。Fast-TransX 与其共享相似的底层设计,可以相互借鉴和优化。
通过以上步骤,你可以快速上手 Fast-TransX 项目,并将其应用于知识图谱的嵌入学习和推理任务中。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









