AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可在AWS云环境中提供最佳性能。
本次发布的v1.12版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境和TensorFlow 2.18.0推理服务组件。
镜像技术细节
该推理镜像的核心组件包括:
-
TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的模型服务框架,支持高性能模型推理和版本管理。
-
Python 3.10环境:镜像内置了Python 3.10解释器,并预装了常用的Python包,包括:
- PyYAML 6.0.2:用于配置文件处理
- boto3 1.36.18和botocore 1.36.18:AWS SDK for Python
- Cython 0.29.37:用于编写C扩展
- protobuf 4.25.6:Google的高效数据序列化工具
-
系统依赖:镜像包含了必要的系统库,如:
- GCC相关库(libgcc-9-dev和libgcc-s1)
- C++标准库(libstdc++-9-dev和libstdc++6)
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
-
成本敏感型推理服务:ARM架构处理器通常比x86架构具有更好的能效比,可以降低推理服务的运营成本。
-
边缘计算场景:许多边缘设备采用ARM架构,使用此镜像可以确保开发环境和生产环境的一致性。
-
Python 3.10兼容性要求:对于需要使用Python 3.10特性的项目,这个镜像提供了开箱即用的支持。
性能优化
AWS对镜像进行了多项优化:
-
针对ARM64架构编译:所有组件都针对ARM64架构进行了优化编译,确保发挥硬件最佳性能。
-
精简设计:仅包含推理所需的必要组件,减少镜像体积和启动时间。
-
系统级优化:Ubuntu 20.04基础系统经过AWS专门调优,适合云环境运行。
使用建议
对于需要在ARM架构上部署TensorFlow模型的开发者,建议:
-
使用此镜像作为基础镜像,可以避免手动配置环境的复杂性。
-
结合AWS EC2的ARM实例(如Graviton系列)使用,可以获得最佳性价比。
-
对于生产环境,建议基于此镜像构建自定义镜像,添加特定模型和业务逻辑。
这个TensorFlow ARM64推理镜像是AWS持续优化深度学习工作负载的一部分,为开发者提供了又一个高效、稳定的工具选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00