AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可在AWS云环境中提供最佳性能。
本次发布的v1.12版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境和TensorFlow 2.18.0推理服务组件。
镜像技术细节
该推理镜像的核心组件包括:
-
TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的模型服务框架,支持高性能模型推理和版本管理。
-
Python 3.10环境:镜像内置了Python 3.10解释器,并预装了常用的Python包,包括:
- PyYAML 6.0.2:用于配置文件处理
- boto3 1.36.18和botocore 1.36.18:AWS SDK for Python
- Cython 0.29.37:用于编写C扩展
- protobuf 4.25.6:Google的高效数据序列化工具
-
系统依赖:镜像包含了必要的系统库,如:
- GCC相关库(libgcc-9-dev和libgcc-s1)
- C++标准库(libstdc++-9-dev和libstdc++6)
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
-
成本敏感型推理服务:ARM架构处理器通常比x86架构具有更好的能效比,可以降低推理服务的运营成本。
-
边缘计算场景:许多边缘设备采用ARM架构,使用此镜像可以确保开发环境和生产环境的一致性。
-
Python 3.10兼容性要求:对于需要使用Python 3.10特性的项目,这个镜像提供了开箱即用的支持。
性能优化
AWS对镜像进行了多项优化:
-
针对ARM64架构编译:所有组件都针对ARM64架构进行了优化编译,确保发挥硬件最佳性能。
-
精简设计:仅包含推理所需的必要组件,减少镜像体积和启动时间。
-
系统级优化:Ubuntu 20.04基础系统经过AWS专门调优,适合云环境运行。
使用建议
对于需要在ARM架构上部署TensorFlow模型的开发者,建议:
-
使用此镜像作为基础镜像,可以避免手动配置环境的复杂性。
-
结合AWS EC2的ARM实例(如Graviton系列)使用,可以获得最佳性价比。
-
对于生产环境,建议基于此镜像构建自定义镜像,添加特定模型和业务逻辑。
这个TensorFlow ARM64推理镜像是AWS持续优化深度学习工作负载的一部分,为开发者提供了又一个高效、稳定的工具选择。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00