Qwen模型中的损失函数计算机制解析
2025-05-12 01:21:26作者:卓艾滢Kingsley
损失函数在语言模型中的重要性
在大型语言模型(Large Language Model, LLM)的训练过程中,损失函数是衡量模型预测质量的关键指标。Qwen作为当前先进的开源大语言模型之一,其损失计算机制对于理解模型训练过程具有重要意义。
Qwen的损失计算实现
Qwen模型的损失计算实现位于其核心建模文件中。具体来说,模型采用标准的语言模型训练方式,通过计算下一个token出现的对数概率来评估预测质量。
核心计算逻辑
Qwen的损失计算基于交叉熵损失函数,这是语言模型训练中最常用的损失函数类型。在实现上,主要包含以下几个关键步骤:
- 前向传播获取logits:模型首先通过前向计算得到每个位置对词汇表中所有token的预测分数(logits)
- 计算交叉熵损失:将预测logits与真实token标签进行比较,计算交叉熵损失
- 损失归一化处理:根据实际参与计算的token数量对损失进行归一化
技术实现细节
在具体实现上,Qwen采用了PyTorch框架提供的交叉熵损失函数,但进行了适当的封装和调整以适应大规模语言模型训练的需求。损失计算会考虑以下因素:
- 注意力掩码(attention mask)的处理,确保不计算padding部分的损失
- 并行计算优化,以适应大规模参数的高效训练
- 混合精度训练支持,减少显存占用同时保持数值稳定性
训练过程中的损失监控
在Qwen的微调脚本中,训练过程会定期输出损失值的变化情况。这些损失值反映了模型在当前训练数据上的预测能力,是调整训练参数的重要依据。
理解Qwen的损失计算机制,不仅有助于更好地监控训练过程,也为针对特定任务进行模型调优提供了理论基础。通过分析损失变化趋势,可以判断模型是否收敛、是否存在过拟合等问题,从而做出相应的训练策略调整。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19