Swift项目中GRPO训练模式下的输出一致性问题分析
2025-05-30 23:54:58作者:卓艾滢Kingsley
问题背景
在Swift项目的强化学习训练过程中,研究人员发现使用GRPO(一种基于策略优化的强化学习算法)进行异步模式训练时,模型对相同提示词(prompt)会生成完全相同的补全结果(completion)。这一现象导致了训练过程中损失函数和KL散度始终为零,严重影响了模型的训练效果。
问题表现
该问题在异步训练模式下表现尤为明显,具体特征包括:
- 零损失现象:训练过程中损失函数和KL散度始终保持在零值附近,无法有效更新模型参数
- 奖励标准差为零:尽管奖励函数本身能够产生正常的标准差,但整体奖励标准差却显示为零
- 输出确定性:相同提示词在不同训练步骤中生成完全相同的补全结果,失去了采样随机性
- 模式差异:在colocated模式下表现正常,仅在异步模式下出现此问题
技术分析
问题根源
经过深入分析,该问题主要源于GRPO训练模式下的随机采样机制失效。在正常情况下,即使对于相同的提示词,模型也应基于设定的温度参数(temperature=0.8)和top-p采样(top_p=0.95)产生多样化的输出。然而在异步训练模式下,采样过程的随机性被意外抑制,导致模型输出变得完全确定。
影响范围
这一问题不仅限于特定模型架构,在Qwen系列不同版本的模型上都可复现。测试表明,无论是Qwen3还是Qwen2.5-7B-Instruct模型都存在相同现象,说明这是训练框架层面的问题而非特定模型的问题。
解决方案
项目维护团队已针对此问题发布了修复补丁,主要调整了以下方面:
- 采样机制优化:确保在异步模式下仍能保持适当的随机性
- 梯度计算修正:解决了导致零梯度的潜在问题
- 分布式训练协调:改进了多节点间的参数同步机制
实践建议
对于使用Swift项目进行强化学习训练的研究人员,建议:
- 及时更新到包含修复补丁的最新版本
- 在训练初期监控输出多样性,确保采样机制正常工作
- 对于关键实验,建议同时运行colocated模式作为对照
- 关注训练日志中的KL散度和奖励标准差指标,这些是判断采样是否正常的重要信号
总结
GRPO训练模式下的输出一致性问题揭示了分布式强化学习系统中潜在的随机性控制挑战。通过本次问题的分析和解决,不仅修复了一个具体的技术缺陷,也为类似框架的设计提供了宝贵经验。在分布式训练环境中,保持适当的随机性同时确保各节点的协调一致,是需要特别关注的设计要点。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
94
603

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0