DagorEngine在Windows ARM64平台上的DX12编译与运行问题解析
背景介绍
DagorEngine是一款功能强大的游戏引擎,在跨平台开发中表现优异。本文将重点探讨在Windows ARM64平台上编译和运行DagorEngine测试样例(GITest)时遇到的DirectX 12相关技术问题及其解决方案。
主要问题分析
在Windows ARM64环境下编译DagorEngine测试样例时,开发者可能会遇到以下典型问题:
- DX12驱动编译失败:在ARM64架构下使用Clang编译器时,drv3d_DX12模块可能出现编译错误
- 驱动选择问题:即使设置使用DX12,运行时仍可能默认使用DX11驱动
- 着色器编译缺失:缺少DX12着色器编译器可执行文件
- 运行时错误:使用DX12时出现内存泄漏和移动时的报错
解决方案
编译器选择与配置
针对ARM64平台,建议采用以下配置策略:
-
优先使用VC编译器:相比Clang,Visual C++编译器对ARM64的支持更为完善。可通过修改jamfile指定平台特定的编译器:
PlatformSpec_windows_x86_64 ?= clang ; PlatformSpec_windows_arm64 ?= vc17 ; -
更新开发工具链:确保使用make_devtools.py更新到最新的工具链版本,这对Clang编译DX12模块尤为重要。
DX12驱动配置
-
启用DX12支持:在jamfile中明确指定支持的驱动列表:
UseD3DMulti ?= yes ; UseD3DMultiList = stub DX11 DX12 ; -
运行时验证:检查settings.blk配置文件,确认驱动设置正确。注意DX12仅在x86_64和ARM64平台上可用,32位模式下会因内存映射不足而被禁用。
运行时依赖处理
-
DX12组件部署:需要将最新版本的d3d12core.dll和d3d12sdklayers.dll从DX12 Agility SDK复制到游戏目录的d3d12子文件夹中。
-
预编译着色器:可以直接使用项目发布的预编译着色器包,避免在ARM64平台上编译着色器的复杂性。
性能与稳定性建议
-
ARM64平台优先选择DX12:根据实际测试,ARM64硬件对DX11的驱动支持较差,容易出现随机崩溃,而DX12运行更为稳定。
-
错误处理:某些DX12运行时错误(如移动时的报错)可以暂时忽略,不影响基本功能。这可能是特定硬件或驱动版本的兼容性问题。
-
内存管理:注意监控DX12模式下的内存使用情况,及时处理可能的内存泄漏问题。
总结
在Windows ARM64平台上使用DagorEngine开发时,正确配置编译环境和运行时组件是关键。通过选择合适的编译器、明确驱动支持列表、部署必要的运行时组件,可以充分发挥DX12在ARM64平台上的性能优势。虽然可能会遇到一些兼容性问题,但通过合理的配置和错误处理,仍能获得良好的开发体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00