Harvester项目中VM导入控制器在离线环境下的镜像拉取问题分析
问题背景
在Harvester v1.4.0和v1.4.1-rc1版本的离线环境中,用户启用VM导入控制器(VM Import Controller)功能时,虽然UI界面显示部署成功,但实际上控制器Pod处于ImagePullBackOff状态,无法正常运行。这个问题影响了离线环境下虚拟机导入功能的正常使用。
问题现象
当用户在离线环境的Harvester集群中执行以下操作时会出现问题:
- 全新安装v1.4.0或v1.4.1-rc1版本的Harvester集群
- 通过UI界面启用VM导入控制器插件
- 为插件指定自定义存储类(Storage Class)
- 检查Pod状态时发现vm-import-controller-harvester-vm-import-controller处于ImagePullBackOff状态
从Pod事件日志中可以看到,系统尝试从docker.io拉取rancher/harvester-vm-import-controller:v0.4.0镜像失败,这在离线环境中是预期行为,因为集群无法访问外部镜像仓库。
根本原因分析
经过深入调查,发现问题的根本原因在于:
- 当用户通过UI界面启用VM导入控制器并指定存储类时,系统生成的配置中缺少了正确的镜像标签(image.tag)设置
- 默认情况下,Chart会使用v0.4.0作为镜像标签,但这个版本的镜像并未包含在Harvester的ISO安装包中
- 实际上,离线环境中应该使用的是v0.4.1版本的镜像,该镜像已包含在ISO中
解决方案
针对这个问题,开发团队提供了两种解决方案:
-
临时解决方案:手动编辑部署配置,将镜像标签更新为v0.4.1
kubectl edit deployment/vm-import-controller-harvester-vm-import-controller -n harvester-system -
永久修复:在v1.5.0-dev版本中,开发团队已经修复了这个问题,确保在离线环境下自动使用正确的镜像版本
技术启示
这个问题给我们带来几个重要的技术启示:
-
离线环境部署的特殊性:在离线环境中,所有依赖的镜像必须预先打包在安装介质中,任何对外部镜像仓库的依赖都会导致失败
-
配置生成的完整性:当通过UI界面修改配置时,系统应该确保生成完整的配置内容,避免遗漏关键参数
-
状态监控的全面性:UI界面仅监控Chart部署状态是不够的,应该同时监控实际工作负载(Pod)的运行状态
验证结果
在v1.5.0-dev-20250120版本的离线环境测试中,这个问题已经得到修复。用户启用VM导入控制器后,系统会自动使用正确的镜像版本,Pod能够正常启动并运行。
总结
这个问题展示了在离线环境下部署云原生应用时可能遇到的典型挑战。Harvester团队通过及时修复确保了VM导入功能在离线环境中的可用性,同时也提醒我们在设计离线部署方案时需要特别注意镜像依赖和配置完整性问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00