Harvester项目中VM导入控制器在离线环境下的镜像拉取问题分析
问题背景
在Harvester v1.4.0和v1.4.1-rc1版本的离线环境中,用户启用VM导入控制器(VM Import Controller)功能时,虽然UI界面显示部署成功,但实际上控制器Pod处于ImagePullBackOff状态,无法正常运行。这个问题影响了离线环境下虚拟机导入功能的正常使用。
问题现象
当用户在离线环境的Harvester集群中执行以下操作时会出现问题:
- 全新安装v1.4.0或v1.4.1-rc1版本的Harvester集群
- 通过UI界面启用VM导入控制器插件
- 为插件指定自定义存储类(Storage Class)
- 检查Pod状态时发现vm-import-controller-harvester-vm-import-controller处于ImagePullBackOff状态
从Pod事件日志中可以看到,系统尝试从docker.io拉取rancher/harvester-vm-import-controller:v0.4.0镜像失败,这在离线环境中是预期行为,因为集群无法访问外部镜像仓库。
根本原因分析
经过深入调查,发现问题的根本原因在于:
- 当用户通过UI界面启用VM导入控制器并指定存储类时,系统生成的配置中缺少了正确的镜像标签(image.tag)设置
- 默认情况下,Chart会使用v0.4.0作为镜像标签,但这个版本的镜像并未包含在Harvester的ISO安装包中
- 实际上,离线环境中应该使用的是v0.4.1版本的镜像,该镜像已包含在ISO中
解决方案
针对这个问题,开发团队提供了两种解决方案:
-
临时解决方案:手动编辑部署配置,将镜像标签更新为v0.4.1
kubectl edit deployment/vm-import-controller-harvester-vm-import-controller -n harvester-system -
永久修复:在v1.5.0-dev版本中,开发团队已经修复了这个问题,确保在离线环境下自动使用正确的镜像版本
技术启示
这个问题给我们带来几个重要的技术启示:
-
离线环境部署的特殊性:在离线环境中,所有依赖的镜像必须预先打包在安装介质中,任何对外部镜像仓库的依赖都会导致失败
-
配置生成的完整性:当通过UI界面修改配置时,系统应该确保生成完整的配置内容,避免遗漏关键参数
-
状态监控的全面性:UI界面仅监控Chart部署状态是不够的,应该同时监控实际工作负载(Pod)的运行状态
验证结果
在v1.5.0-dev-20250120版本的离线环境测试中,这个问题已经得到修复。用户启用VM导入控制器后,系统会自动使用正确的镜像版本,Pod能够正常启动并运行。
总结
这个问题展示了在离线环境下部署云原生应用时可能遇到的典型挑战。Harvester团队通过及时修复确保了VM导入功能在离线环境中的可用性,同时也提醒我们在设计离线部署方案时需要特别注意镜像依赖和配置完整性问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00