Harvester项目中VM导入控制器在离线环境下的镜像拉取问题分析
问题背景
在Harvester v1.4.0和v1.4.1-rc1版本的离线环境中,用户启用VM导入控制器(VM Import Controller)功能时,虽然UI界面显示部署成功,但实际上控制器Pod处于ImagePullBackOff状态,无法正常运行。这个问题影响了离线环境下虚拟机导入功能的正常使用。
问题现象
当用户在离线环境的Harvester集群中执行以下操作时会出现问题:
- 全新安装v1.4.0或v1.4.1-rc1版本的Harvester集群
- 通过UI界面启用VM导入控制器插件
- 为插件指定自定义存储类(Storage Class)
- 检查Pod状态时发现vm-import-controller-harvester-vm-import-controller处于ImagePullBackOff状态
从Pod事件日志中可以看到,系统尝试从docker.io拉取rancher/harvester-vm-import-controller:v0.4.0镜像失败,这在离线环境中是预期行为,因为集群无法访问外部镜像仓库。
根本原因分析
经过深入调查,发现问题的根本原因在于:
- 当用户通过UI界面启用VM导入控制器并指定存储类时,系统生成的配置中缺少了正确的镜像标签(image.tag)设置
- 默认情况下,Chart会使用v0.4.0作为镜像标签,但这个版本的镜像并未包含在Harvester的ISO安装包中
- 实际上,离线环境中应该使用的是v0.4.1版本的镜像,该镜像已包含在ISO中
解决方案
针对这个问题,开发团队提供了两种解决方案:
-
临时解决方案:手动编辑部署配置,将镜像标签更新为v0.4.1
kubectl edit deployment/vm-import-controller-harvester-vm-import-controller -n harvester-system
-
永久修复:在v1.5.0-dev版本中,开发团队已经修复了这个问题,确保在离线环境下自动使用正确的镜像版本
技术启示
这个问题给我们带来几个重要的技术启示:
-
离线环境部署的特殊性:在离线环境中,所有依赖的镜像必须预先打包在安装介质中,任何对外部镜像仓库的依赖都会导致失败
-
配置生成的完整性:当通过UI界面修改配置时,系统应该确保生成完整的配置内容,避免遗漏关键参数
-
状态监控的全面性:UI界面仅监控Chart部署状态是不够的,应该同时监控实际工作负载(Pod)的运行状态
验证结果
在v1.5.0-dev-20250120版本的离线环境测试中,这个问题已经得到修复。用户启用VM导入控制器后,系统会自动使用正确的镜像版本,Pod能够正常启动并运行。
总结
这个问题展示了在离线环境下部署云原生应用时可能遇到的典型挑战。Harvester团队通过及时修复确保了VM导入功能在离线环境中的可用性,同时也提醒我们在设计离线部署方案时需要特别注意镜像依赖和配置完整性问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









