PaddleDetection中多模型投票NMS结果融合的优化实践
2025-05-17 00:29:26作者:齐添朝
背景介绍
在目标检测任务中,当面临大规模数据集时,由于计算资源和存储空间的限制,开发者常常需要采用分批训练的策略。这种策略下,模型会被分成多个批次进行训练,最终通过非极大值抑制(NMS)融合各模型的检测结果。然而,在实际应用中,这种融合方式可能会导致性能指标意外下降。
问题分析
在PaddleDetection框架中,特别是使用DETR系列模型(如RT-DETR)时,多模型结果融合面临以下技术挑战:
- 特征空间不一致:不同批次训练的模型可能学习到不同的特征表示,导致预测结果难以有效融合
- 后处理差异:DETRPostProcess的参数设置(如num_top_queries)会影响最终输出框的质量和数量
- 置信度分布变化:各模型输出的置信度分布可能存在差异,简单的NMS融合可能无法保留最优预测
解决方案探索
方案一:调整NMS阈值
初始尝试通过设置0.5的置信度阈值筛选低质量预测框,但发现:
- 单独模型和融合模型使用相同阈值时,性能下降问题依然存在
- 简单的阈值过滤无法解决特征空间不一致的根本问题
方案二:特征层融合替代结果层融合
考虑在RTDETRTransformer的num_queries阶段进行特征平均,而非在DETRPostProcess后进行NMS融合。这种方案理论上可以:
- 保持特征空间的一致性
- 避免后处理阶段的信息损失
- 但实现复杂度较高,需要修改模型架构
方案三:采用加权框融合(WBF)算法
最终采用的解决方案是使用weighted_boxes_fusion替代传统NMS:
- WBF算法综合考虑多个预测框的置信度和位置信息
- 通过加权平均保留更多有价值的信息
- 对预测框之间的微小差异具有更好的鲁棒性
实施建议
对于PaddleDetection用户面临类似问题时,建议:
-
数据预处理一致性:
- 确保各批次数据的分布尽可能一致
- 检查图像尺寸归一化参数(norm)的设置
-
模型参数调整:
- 合理设置RTDETRTransformer中的num_queries参数
- 调整DETRPostProcess的num_top_queries以平衡召回率和准确率
-
融合算法选择:
- 优先尝试weighted_boxes_fusion等先进融合算法
- 可视化融合前后的检测框对比分析问题
-
训练策略优化:
- 考虑使用模型蒸馏技术统一特征空间
- 尝试在最后几轮进行全数据微调
总结
在PaddleDetection框架下处理大规模数据时,分批训练+结果融合是一种实用的解决方案。通过采用加权框融合等先进技术,可以有效解决传统NMS融合导致的性能下降问题。开发者应当根据具体场景选择合适的融合策略,并通过可视化分析不断优化融合效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K