Olive项目v0.8.0版本发布:模型优化与量化新突破
项目概述
Olive是一个由微软开源的模型优化工具链,专注于为AI模型提供端到端的优化解决方案。该项目通过一系列创新的优化技术,帮助开发者提升模型性能、减少推理延迟并降低资源消耗,特别适合在边缘设备和专用处理器上部署AI模型。
核心功能更新
新型量化与转换技术
本次更新引入了两项重要的权重优化技术:
-
QuaRot:一种离线权重转换技术,通过对模型权重进行数学变换,提升量化后的模型精度。这项技术特别适合处理那些传统量化方法难以保持精度的复杂模型。
-
SpinQuant:另一种创新的离线权重转换方法,与QuaRot形成互补,为开发者提供了更多优化选择。这两种技术可以显著改善模型在低精度环境下的表现。
静态LLM转换
新增的StaticLLM功能解决了大型语言模型在专用处理器上部署的关键挑战。它将动态形状的LLM转换为静态形状版本,使得这些模型能够在专用神经网络处理器上高效运行。这一功能为边缘设备部署LLM开辟了新途径。
模型调整工具
GraphSurgeries是一个模块化的ONNX模型修改框架,允许开发者对模型图结构进行精细调整。每个"调整"操作都是可配置的独立模块,支持灵活组合,为模型优化提供了前所未有的控制能力。
高效微调技术
v0.8.0版本集成了多种参数高效微调方法:
- LoHa(低秩Hadamard乘积适配器)
- LoKr(低秩Kronecker乘积适配器)
- DoRA(基于方向的低秩适配)
这些技术显著降低了微调大型模型所需的计算资源,同时保持了模型性能。
工具链增强
命令行界面改进
新版CLI工具更加用户友好:
- 新增
generate_config_file选项,可保存工作流配置文件 - 简化的
quantize命令降低了使用门槛 extract-adapters命令支持从PyTorch模型中提取多个适配器
模型处理优化
多项模型处理功能得到增强:
- 改进的输出模型结构管理
- 新增
no_artifacts选项,可禁用非必要运行产物的保存 - 更智能的数据预处理,包括自动截断和空文本过滤
ONNX相关改进
SplitModel现在能保持QDQ节点在同一分割块中OnnxPeepholeOptimizer集成了常量折叠和优化器OnnxConversion支持动态形状导出和优化选项OnnxQuantization支持最新版ONNX Runtime并增加了操作类型排除功能
应用示例扩展
新版本增加了丰富的示例应用,覆盖多种模型架构和场景:
- 小型语言模型:包括Phi-3.5、Deepseek R1 Distill和Llama 3.2等
- 计算机视觉模型:MobileNet、ResNet、CLIP VIT等
- 专用模型:目标检测、图像细节增强等应用
- 微调示例:如Deepseek R1 Distill的完整微调流程
技术价值
Olive v0.8.0的发布标志着AI模型优化工具链的又一次重大进步。通过引入创新的量化技术、增强的模型处理能力和扩展的应用示例,该项目为开发者提供了更强大的工具来优化和部署AI模型。特别是在边缘计算和专用硬件领域,这些更新将显著降低模型部署的技术门槛和资源需求。
对于需要在资源受限环境中部署高效AI模型的团队来说,Olive v0.8.0提供了一个全面而灵活的解决方案,从模型优化到最终部署的每个环节都得到了加强。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00