Olive项目v0.8.0版本发布:模型优化与量化新突破
项目概述
Olive是一个由微软开源的模型优化工具链,专注于为AI模型提供端到端的优化解决方案。该项目通过一系列创新的优化技术,帮助开发者提升模型性能、减少推理延迟并降低资源消耗,特别适合在边缘设备和专用处理器上部署AI模型。
核心功能更新
新型量化与转换技术
本次更新引入了两项重要的权重优化技术:
-
QuaRot:一种离线权重转换技术,通过对模型权重进行数学变换,提升量化后的模型精度。这项技术特别适合处理那些传统量化方法难以保持精度的复杂模型。
-
SpinQuant:另一种创新的离线权重转换方法,与QuaRot形成互补,为开发者提供了更多优化选择。这两种技术可以显著改善模型在低精度环境下的表现。
静态LLM转换
新增的StaticLLM功能解决了大型语言模型在专用处理器上部署的关键挑战。它将动态形状的LLM转换为静态形状版本,使得这些模型能够在专用神经网络处理器上高效运行。这一功能为边缘设备部署LLM开辟了新途径。
模型调整工具
GraphSurgeries是一个模块化的ONNX模型修改框架,允许开发者对模型图结构进行精细调整。每个"调整"操作都是可配置的独立模块,支持灵活组合,为模型优化提供了前所未有的控制能力。
高效微调技术
v0.8.0版本集成了多种参数高效微调方法:
- LoHa(低秩Hadamard乘积适配器)
- LoKr(低秩Kronecker乘积适配器)
- DoRA(基于方向的低秩适配)
这些技术显著降低了微调大型模型所需的计算资源,同时保持了模型性能。
工具链增强
命令行界面改进
新版CLI工具更加用户友好:
- 新增
generate_config_file选项,可保存工作流配置文件 - 简化的
quantize命令降低了使用门槛 extract-adapters命令支持从PyTorch模型中提取多个适配器
模型处理优化
多项模型处理功能得到增强:
- 改进的输出模型结构管理
- 新增
no_artifacts选项,可禁用非必要运行产物的保存 - 更智能的数据预处理,包括自动截断和空文本过滤
ONNX相关改进
SplitModel现在能保持QDQ节点在同一分割块中OnnxPeepholeOptimizer集成了常量折叠和优化器OnnxConversion支持动态形状导出和优化选项OnnxQuantization支持最新版ONNX Runtime并增加了操作类型排除功能
应用示例扩展
新版本增加了丰富的示例应用,覆盖多种模型架构和场景:
- 小型语言模型:包括Phi-3.5、Deepseek R1 Distill和Llama 3.2等
- 计算机视觉模型:MobileNet、ResNet、CLIP VIT等
- 专用模型:目标检测、图像细节增强等应用
- 微调示例:如Deepseek R1 Distill的完整微调流程
技术价值
Olive v0.8.0的发布标志着AI模型优化工具链的又一次重大进步。通过引入创新的量化技术、增强的模型处理能力和扩展的应用示例,该项目为开发者提供了更强大的工具来优化和部署AI模型。特别是在边缘计算和专用硬件领域,这些更新将显著降低模型部署的技术门槛和资源需求。
对于需要在资源受限环境中部署高效AI模型的团队来说,Olive v0.8.0提供了一个全面而灵活的解决方案,从模型优化到最终部署的每个环节都得到了加强。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00