Microsoft Olive项目v0.9.1版本发布:优化AI模型推理性能
Microsoft Olive是一个专注于优化AI模型推理性能的开源工具链,它能够帮助开发者和研究人员将训练好的模型转换为高效推理格式,并在不同硬件平台上实现最佳性能。该项目支持多种流行的AI框架和硬件加速设备,为模型部署提供了灵活且高效的解决方案。
版本核心改进
最新发布的v0.9.1版本主要针对几个关键领域进行了优化和改进:
OpenVINO封装改进
此版本修复了OpenVINO封装中的pad_token_id问题。对于使用OpenVINO作为推理后端的自然语言处理模型,这一改进确保了token填充操作的准确性,特别是在处理变长输入序列时。这一修复直接影响模型的输出质量,特别是在文本生成、分类等任务中。
NVIDIA TensorRT-RTX支持
v0.9.1版本新增了对NVIDIA TensorRT-RTX执行提供程序的支持。TensorRT是NVIDIA推出的高性能深度学习推理优化器和运行时引擎,而RTX版本则针对NVIDIA RTX系列GPU进行了特别优化。这一支持意味着:
- 开发者现在可以利用Olive将模型优化为TensorRT-RTX格式
- 能够充分发挥RTX GPU的硬件加速能力
- 特别适合计算机视觉和自然语言处理模型的加速
项目还提供了针对ViT(Vision Transformer)、CLIP和BERT等流行模型的TensorRT-RTX优化示例,为开发者提供了现成的参考实现。
ONNX运行时自动EP选择
从ONNX Runtime 1.22.0版本开始,引入了自动执行提供程序(EP)选择功能。Olive v0.9.1版本增加了对这一特性的基础支持,使得:
- 运行时能够自动选择最适合当前硬件环境的执行提供程序
- 简化了跨平台部署的配置工作
- 提升了模型在不同硬件上的兼容性
依赖管理优化
项目对Optimum库的OpenVINO支持版本进行了限制(<=1.24),确保了依赖版本的稳定性,避免了因依赖版本冲突导致的问题。
技术意义与应用价值
这些改进共同提升了Olive作为AI模型优化工具的能力:
-
硬件兼容性扩展:新增的TensorRT-RTX支持使Olive能够覆盖更广泛的硬件加速设备,特别是NVIDIA的最新GPU产品线。
-
自动化程度提高:ONNX运行时自动EP选择的引入减少了手动配置的工作量,使模型部署更加便捷。
-
稳定性增强:对关键依赖版本的管控和已知问题的修复提高了整个工具链的可靠性。
-
性能优化:针对特定硬件(如RTX GPU)的专门优化可以带来显著的推理速度提升,这对实时应用场景尤为重要。
对于AI工程师和研究者来说,这些改进意味着他们可以更轻松地将训练好的模型部署到生产环境,并在不同硬件平台上获得最佳性能。特别是计算机视觉和自然语言处理领域的研究者,可以从新增的TensorRT-RTX支持中直接受益。
总结
Microsoft Olive v0.9.1版本通过新增硬件支持、改进现有功能和修复已知问题,进一步巩固了其作为AI模型优化和部署工具的地位。这些改进特别有利于需要在多种硬件平台上部署高效推理模型的应用场景,为AI模型的工业化应用提供了有力支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00