MMDeploy项目中RTMO模型在TensorRT部署时的矩形输入问题解析
2025-06-27 13:43:02作者:范垣楠Rhoda
问题背景
在MMDeploy项目中将RTMO姿态估计模型部署到TensorRT时,开发者发现了一个有趣的现象:当使用正方形输入尺寸(1×3×640×640)时,TensorRT模型能够正常工作,输出结果与PyTorch模型基本一致;但当改为矩形输入尺寸(1×3×1280×640)时,虽然PyTorch模型仍能正常工作,TensorRT模型输出的关键点位置却出现了明显偏差。
现象表现
从实际运行结果对比图中可以观察到:
- PyTorch模型在矩形输入下输出正常,关键点位置准确
- TensorRT模型在相同输入下,虽然整体姿态相似,但关键点位置存在明显偏移
问题根源分析
经过深入排查,发现问题出在RTMO头部(rtmo_head)的重写器(rewriter)实现上。具体来说:
- RTMO头部在部署模式下需要两个关键变量:
self.flatten_priors和self.flatten_stride - 这两个变量是在
switch_to_deploy函数中预定义的(位于mmpose/models/heads/hybrid_heads/rtmo_head.py) - 原实现中特征图生成时使用了固定的高宽比例,没有正确处理矩形输入的情况
解决方案
问题的核心在于特征图生成时的尺寸处理不当。在PyTorch张量中,尺寸顺序是(1,1,height,width),而输入尺寸参数input_size的顺序是(width,height)。正确的修改方式应该是:
featuremaps.append(torch.rand(1, 1, input_size[1] // s, input_size[0] // s))
这一修改确保了:
- 正确解析输入尺寸的宽高顺序
- 特征图生成时保持正确的宽高比例
- 适应各种矩形输入尺寸的情况
技术启示
这个案例给我们几点重要启示:
- 尺寸顺序一致性:在计算机视觉和深度学习领域,不同框架和接口对尺寸顺序的定义可能不同,开发时需要特别注意
- 部署验证:模型在训练框架和部署框架中的行为可能存在差异,需要进行全面的验证测试
- 矩形输入支持:许多视觉模型最初设计时考虑正方形输入,但在实际应用中矩形输入更为常见,部署时需要确保支持
总结
通过分析RTMO模型在TensorRT部署时出现的矩形输入问题,我们不仅找到了具体解决方案,也加深了对模型部署过程中尺寸处理重要性的理解。这类问题的解决往往需要对训练框架和部署框架都有深入理解,才能准确定位问题根源。
对于开发者而言,在模型部署过程中,应当特别注意输入输出尺寸的匹配问题,特别是在处理非正方形输入时,需要全面验证模型在各个组件中的尺寸处理逻辑。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
195
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692