MMDeploy项目中RTMO模型在TensorRT部署时的矩形输入问题解析
2025-06-27 10:45:02作者:范垣楠Rhoda
问题背景
在MMDeploy项目中将RTMO姿态估计模型部署到TensorRT时,开发者发现了一个有趣的现象:当使用正方形输入尺寸(1×3×640×640)时,TensorRT模型能够正常工作,输出结果与PyTorch模型基本一致;但当改为矩形输入尺寸(1×3×1280×640)时,虽然PyTorch模型仍能正常工作,TensorRT模型输出的关键点位置却出现了明显偏差。
现象表现
从实际运行结果对比图中可以观察到:
- PyTorch模型在矩形输入下输出正常,关键点位置准确
- TensorRT模型在相同输入下,虽然整体姿态相似,但关键点位置存在明显偏移
问题根源分析
经过深入排查,发现问题出在RTMO头部(rtmo_head)的重写器(rewriter)实现上。具体来说:
- RTMO头部在部署模式下需要两个关键变量:
self.flatten_priors和self.flatten_stride - 这两个变量是在
switch_to_deploy函数中预定义的(位于mmpose/models/heads/hybrid_heads/rtmo_head.py) - 原实现中特征图生成时使用了固定的高宽比例,没有正确处理矩形输入的情况
解决方案
问题的核心在于特征图生成时的尺寸处理不当。在PyTorch张量中,尺寸顺序是(1,1,height,width),而输入尺寸参数input_size的顺序是(width,height)。正确的修改方式应该是:
featuremaps.append(torch.rand(1, 1, input_size[1] // s, input_size[0] // s))
这一修改确保了:
- 正确解析输入尺寸的宽高顺序
- 特征图生成时保持正确的宽高比例
- 适应各种矩形输入尺寸的情况
技术启示
这个案例给我们几点重要启示:
- 尺寸顺序一致性:在计算机视觉和深度学习领域,不同框架和接口对尺寸顺序的定义可能不同,开发时需要特别注意
- 部署验证:模型在训练框架和部署框架中的行为可能存在差异,需要进行全面的验证测试
- 矩形输入支持:许多视觉模型最初设计时考虑正方形输入,但在实际应用中矩形输入更为常见,部署时需要确保支持
总结
通过分析RTMO模型在TensorRT部署时出现的矩形输入问题,我们不仅找到了具体解决方案,也加深了对模型部署过程中尺寸处理重要性的理解。这类问题的解决往往需要对训练框架和部署框架都有深入理解,才能准确定位问题根源。
对于开发者而言,在模型部署过程中,应当特别注意输入输出尺寸的匹配问题,特别是在处理非正方形输入时,需要全面验证模型在各个组件中的尺寸处理逻辑。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
403
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219