Tongrams:高效处理大规模N-Gram数据的开源利器
2024-09-21 12:58:06作者:吴年前Myrtle
项目介绍
Tongrams 是一个用C++编写的库,旨在压缩空间中索引和查询大规模语言模型。该项目基于Giulio Ermanno Pibiri和Rossano Venturini的研究成果,详细内容可参考以下两篇论文:
Tongrams的核心功能包括将N-Gram映射到其对应的整数频率计数或浮点概率和回退值,支持高效的搜索和查询操作。此外,Tongrams还提供了Rust实现版本,进一步扩展了其适用范围。
项目技术分析
Tongrams采用了多种先进的数据结构和算法来实现其功能:
- 压缩Trie数据结构:N-Gram被分配整数标识符(IDs),并使用Elias-Fano编码进行压缩,以支持在压缩空间中的高效搜索。
- 上下文重映射:通过上下文重映射技术,将固定长度上下文后的单词编码为整数,避免了整个词汇表大小的限制。
- 最小完美哈希(MPH):支持基于MPH的模型构建,实现常数时间内的检索。
此外,Tongrams还支持多种操作,如lookup()用于返回指定N-Gram的出现次数,score()用于计算文本的困惑度(perplexity)。
项目及技术应用场景
Tongrams适用于多种需要高效处理大规模N-Gram数据的场景:
- 自然语言处理(NLP):在语言模型训练和评估中,Tongrams可以显著提高数据处理效率。
- 信息检索:在搜索引擎和推荐系统中,Tongrams可以帮助快速检索和分析大规模文本数据。
- 数据压缩:在需要高效存储和检索数据的场景中,Tongrams的压缩技术可以大幅减少存储空间和计算资源的需求。
项目特点
- 高效压缩:采用Elias-Fano编码和上下文重映射技术,实现高效的数据压缩和检索。
- 灵活性:支持多种数据结构和操作,满足不同应用场景的需求。
- 跨平台支持:已在Linux和Mac OS X系统上测试,支持多种编译器(如gcc和clang)。
- 易于集成:提供Python Wrapper,方便开发者集成到现有项目中。
总结
Tongrams是一个功能强大且高效的开源项目,适用于需要处理大规模N-Gram数据的多种应用场景。无论是在自然语言处理、信息检索还是数据压缩领域,Tongrams都能提供卓越的性能和灵活性。如果你正在寻找一个高效、可靠的工具来处理大规模语言模型数据,Tongrams绝对值得一试。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881