Tongrams 项目教程
2024-09-17 20:47:03作者:庞眉杨Will
1. 项目介绍
Tongrams 是一个 C++ 库,用于在压缩空间中索引和查询大型语言模型。该项目由 Giulio Ermanno Pibiri 和 Rossano Venturini 开发,基于他们在以下论文中提出的数据结构:
- Efficient Data Structures for Massive N-Gram Datasets
- Handling Massive N-Gram Datasets Efficiently
Tongrams 的主要功能包括:
- 存储 N-gram 语言模型及其频率计数。
- 通过压缩的 trie 数据结构支持高效的查询操作。
- 支持基于最小完美哈希(MPH)的模型构建,以实现常数时间检索。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- CMake
- Boost
如果你的仓库是通过非递归方式克隆的,请执行以下命令初始化子模块:
git submodule init
git submodule update
2.2 构建项目
在 Unix 系统上,你可以通过以下步骤构建项目:
mkdir build
cd build
cmake ..
make
如果你想启用并行编译,可以使用以下命令:
make -j4
2.3 示例代码
以下是一个简单的示例,展示如何使用 Tongrams 构建一个 Elias-Fano trie 并进行查询:
#include <tongrams/tongrams.hpp>
int main() {
// 构建一个 Elias-Fano trie
tongrams::TrieBuilder builder;
builder.build("test_data", "ef_trie.bin");
// 加载 trie
tongrams::Trie trie("ef_trie.bin");
// 查询 N-gram
std::string query = "the function";
auto count = trie.lookup(query);
std::cout << "Count of '" << query << "': " << count << std::endl;
return 0;
}
3. 应用案例和最佳实践
3.1 应用案例
Tongrams 可以广泛应用于自然语言处理(NLP)领域,特别是在需要处理大规模 N-gram 数据集的场景中。例如:
- 语言模型训练:在训练大型语言模型时,Tongrams 可以用于高效地存储和查询 N-gram 频率。
- 信息检索:在搜索引擎中,Tongrams 可以用于快速检索与查询相关的 N-gram。
3.2 最佳实践
- 数据预处理:在使用 Tongrams 之前,确保你的 N-gram 数据已经按照 Google 格式进行了预处理,并且文件已经排序。
- 压缩输入文件:为了提高效率,建议使用 gzip 等工具对输入文件进行压缩。
- 选择合适的模型:根据你的需求选择合适的模型类型(如 Elias-Fano trie 或 MPH),以平衡查询速度和存储空间。
4. 典型生态项目
Tongrams 作为一个高效的 N-gram 索引和查询库,可以与其他 NLP 工具和库结合使用,形成一个完整的生态系统。以下是一些典型的生态项目:
- spaCy:一个强大的 NLP 库,可以与 Tongrams 结合使用,用于构建和查询复杂的语言模型。
- Gensim:一个用于主题建模和文档相似性计算的 Python 库,可以与 Tongrams 结合使用,以提高 N-gram 处理的效率。
- TensorFlow/PyTorch:用于深度学习的框架,可以与 Tongrams 结合使用,以支持大规模语言模型的训练和推理。
通过这些生态项目的结合,Tongrams 可以在更广泛的 NLP 应用中发挥重要作用。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0