NeuralForecast中如何获取验证损失曲线
2025-06-24 08:06:42作者:薛曦旖Francesca
在时间序列预测项目中,监控模型训练过程中的损失变化是评估模型性能的关键步骤。本文将详细介绍在使用Nixtla的NeuralForecast库时,如何正确获取和可视化训练过程中的验证损失曲线。
问题背景
许多用户在训练TSMixerx等时序模型时发现,虽然可以轻松获取训练损失(train_loss_step),但验证损失(valid_loss_step)的信息却难以获取。这给模型性能监控和过拟合检测带来了困难。
解决方案
1. 确保设置验证集
首先,必须在模型训练时明确指定验证集的大小。这是获取验证损失的前提条件:
# 在调用fit方法时设置val_size参数
nf.fit(df, val_size=100) # 保留100个时间步作为验证集
2. 获取损失轨迹数据
训练完成后,可以通过模型的train_trajectories和valid_trajectories属性获取完整的损失轨迹:
# 获取训练和验证损失数据
model = nf.models[0]
train_loss = model.train_trajectories
valid_loss = model.valid_trajectories
3. 可视化损失曲线
将获取的损失数据转换为DataFrame后,可以方便地进行可视化:
import pandas as pd
import matplotlib.pyplot as plt
# 训练损失可视化
train_df = pd.DataFrame(train_loss, columns=['step', 'loss'])
plt.plot(train_df['step'], train_df['loss'])
plt.title("训练损失曲线")
plt.xlabel("训练步数")
plt.ylabel("损失值")
plt.show()
# 验证损失可视化
valid_df = pd.DataFrame(valid_loss, columns=['step', 'loss'])
plt.plot(valid_df['step'], valid_df['loss'])
plt.title("验证损失曲线")
plt.xlabel("验证步数")
plt.ylabel("损失值")
plt.show()
深入理解
验证频率设置
在模型初始化时,可以通过val_check_steps参数控制验证的频率:
model = TSMixerx(
# 其他参数...
val_check_steps=100, # 每100步进行一次验证
# 其他参数...
)
损失函数选择
NeuralForecast支持多种验证损失函数,如MAE、MSE等:
from neuralforecast.losses.pytorch import MAE, MSE
model = TSMixerx(
# 其他参数...
valid_loss=MAE(), # 使用平均绝对误差作为验证指标
# 其他参数...
)
最佳实践建议
- 合理设置验证集大小:验证集应足够大以代表数据分布,但又不能影响训练数据量
- 监控双损失曲线:同时观察训练和验证损失,可以及时发现过拟合或欠拟合
- 调整验证频率:对于大数据集,可以适当增加验证间隔以提高训练效率
- 多指标监控:除了损失函数,还可以监控其他评估指标如RMSE、MAPE等
通过以上方法,用户可以全面掌握模型在训练过程中的性能变化,为模型调优提供有力依据。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
580
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
352
仓颉编程语言运行时与标准库。
Cangjie
130
365
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205