NeuralForecast中如何获取验证损失曲线
2025-06-24 12:39:06作者:薛曦旖Francesca
在时间序列预测项目中,监控模型训练过程中的损失变化是评估模型性能的关键步骤。本文将详细介绍在使用Nixtla的NeuralForecast库时,如何正确获取和可视化训练过程中的验证损失曲线。
问题背景
许多用户在训练TSMixerx等时序模型时发现,虽然可以轻松获取训练损失(train_loss_step),但验证损失(valid_loss_step)的信息却难以获取。这给模型性能监控和过拟合检测带来了困难。
解决方案
1. 确保设置验证集
首先,必须在模型训练时明确指定验证集的大小。这是获取验证损失的前提条件:
# 在调用fit方法时设置val_size参数
nf.fit(df, val_size=100) # 保留100个时间步作为验证集
2. 获取损失轨迹数据
训练完成后,可以通过模型的train_trajectories
和valid_trajectories
属性获取完整的损失轨迹:
# 获取训练和验证损失数据
model = nf.models[0]
train_loss = model.train_trajectories
valid_loss = model.valid_trajectories
3. 可视化损失曲线
将获取的损失数据转换为DataFrame后,可以方便地进行可视化:
import pandas as pd
import matplotlib.pyplot as plt
# 训练损失可视化
train_df = pd.DataFrame(train_loss, columns=['step', 'loss'])
plt.plot(train_df['step'], train_df['loss'])
plt.title("训练损失曲线")
plt.xlabel("训练步数")
plt.ylabel("损失值")
plt.show()
# 验证损失可视化
valid_df = pd.DataFrame(valid_loss, columns=['step', 'loss'])
plt.plot(valid_df['step'], valid_df['loss'])
plt.title("验证损失曲线")
plt.xlabel("验证步数")
plt.ylabel("损失值")
plt.show()
深入理解
验证频率设置
在模型初始化时,可以通过val_check_steps
参数控制验证的频率:
model = TSMixerx(
# 其他参数...
val_check_steps=100, # 每100步进行一次验证
# 其他参数...
)
损失函数选择
NeuralForecast支持多种验证损失函数,如MAE、MSE等:
from neuralforecast.losses.pytorch import MAE, MSE
model = TSMixerx(
# 其他参数...
valid_loss=MAE(), # 使用平均绝对误差作为验证指标
# 其他参数...
)
最佳实践建议
- 合理设置验证集大小:验证集应足够大以代表数据分布,但又不能影响训练数据量
- 监控双损失曲线:同时观察训练和验证损失,可以及时发现过拟合或欠拟合
- 调整验证频率:对于大数据集,可以适当增加验证间隔以提高训练效率
- 多指标监控:除了损失函数,还可以监控其他评估指标如RMSE、MAPE等
通过以上方法,用户可以全面掌握模型在训练过程中的性能变化,为模型调优提供有力依据。
登录后查看全文
热门项目推荐
相关项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70