NeuralForecast中的滚动窗口预测方法解析
2025-06-24 14:25:05作者:裴麒琰
在时间序列预测领域,滚动窗口预测是一种常见且有效的技术手段。本文将深入探讨如何在Nixtla的NeuralForecast库中实现这一功能,帮助读者掌握递归多步预测的核心技术要点。
滚动窗口预测的基本原理
滚动窗口预测(Rolling Window Forecasting)是一种动态预测方法,它通过不断移动的时间窗口来模拟实际预测场景。具体来说:
- 使用历史数据窗口(如X_{t-15}到X_t)预测下一个时间点X_{t+1}
- 将预测结果纳入下一轮预测的输入窗口
- 窗口向前滑动一个时间单位,重复上述过程
这种方法特别适合需要连续预测的场景,能够有效评估模型在实际应用中的表现。
NeuralForecast实现方案
在NeuralForecast中,可以通过cross_validation方法实现滚动窗口预测。以下是关键参数配置:
h参数:设置预测步长,决定每次预测的未来时间点数n_windows参数:控制滚动窗口的数量,直接影响测试集的分割方式val_size和test_size:替代n_windows的另一种数据划分方式
实际应用示例
假设我们有一个包含1000个时间点的数据集,希望使用前800个点训练,后200个点测试:
from neuralforecast import NeuralForecast
from neuralforecast.auto import AutoLSTM
from neuralforecast.losses.pytorch import MQLoss
# 模型参数配置
LSTM_params = {
"input_size": 15,
"encoder_hidden_size": 200,
"encoder_n_layers": 2,
"context_size": 10,
"decoder_hidden_size": 256,
"learning_rate": 1e-3,
"max_steps": 500,
"batch_size": 32
}
# 数据分割
num_samples = len(df)
num_train = int(0.8 * num_samples)
X_train = df[:num_train]
X_test = df[num_train:]
# 模型初始化
models = [AutoLSTM(h=1, config=LSTM_params)]
nf = NeuralForecast(models=models, freq='1D')
# 滚动窗口验证
cv_df = nf.cross_validation(df=df, n_windows=len(X_test))
技术要点解析
-
窗口大小选择:
input_size参数决定了模型观察的历史窗口长度,应根据数据周期特性合理设置 -
预测步长控制:
h参数决定了每次预测的未来时间点数,设置为1可实现单步滚动预测 -
数据分割策略:
n_windows=len(X_test)确保每个测试点都作为独立的预测窗口起点 -
模型容量配置:通过
encoder_hidden_size等参数调整模型复杂度,平衡拟合能力与泛化性能
最佳实践建议
-
对于长期依赖的时间序列,适当增大
input_size以捕获更长历史模式 -
在多变量预测场景中,考虑使用
local_scaler_type进行特征归一化 -
通过交叉验证选择最优模型参数,避免过拟合
-
监控验证集损失曲线,及时调整训练策略
滚动窗口预测是评估时间序列模型实际表现的有力工具,掌握NeuralForecast中的实现方法能够帮助数据科学家更准确地评估模型在真实场景中的预测能力。通过合理配置窗口参数和模型结构,可以在各种业务场景中获得可靠的预测结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120