NeuralForecast中的滚动窗口预测方法解析
2025-06-24 07:47:41作者:裴麒琰
在时间序列预测领域,滚动窗口预测是一种常见且有效的技术手段。本文将深入探讨如何在Nixtla的NeuralForecast库中实现这一功能,帮助读者掌握递归多步预测的核心技术要点。
滚动窗口预测的基本原理
滚动窗口预测(Rolling Window Forecasting)是一种动态预测方法,它通过不断移动的时间窗口来模拟实际预测场景。具体来说:
- 使用历史数据窗口(如X_{t-15}到X_t)预测下一个时间点X_{t+1}
- 将预测结果纳入下一轮预测的输入窗口
- 窗口向前滑动一个时间单位,重复上述过程
这种方法特别适合需要连续预测的场景,能够有效评估模型在实际应用中的表现。
NeuralForecast实现方案
在NeuralForecast中,可以通过cross_validation
方法实现滚动窗口预测。以下是关键参数配置:
h
参数:设置预测步长,决定每次预测的未来时间点数n_windows
参数:控制滚动窗口的数量,直接影响测试集的分割方式val_size
和test_size
:替代n_windows
的另一种数据划分方式
实际应用示例
假设我们有一个包含1000个时间点的数据集,希望使用前800个点训练,后200个点测试:
from neuralforecast import NeuralForecast
from neuralforecast.auto import AutoLSTM
from neuralforecast.losses.pytorch import MQLoss
# 模型参数配置
LSTM_params = {
"input_size": 15,
"encoder_hidden_size": 200,
"encoder_n_layers": 2,
"context_size": 10,
"decoder_hidden_size": 256,
"learning_rate": 1e-3,
"max_steps": 500,
"batch_size": 32
}
# 数据分割
num_samples = len(df)
num_train = int(0.8 * num_samples)
X_train = df[:num_train]
X_test = df[num_train:]
# 模型初始化
models = [AutoLSTM(h=1, config=LSTM_params)]
nf = NeuralForecast(models=models, freq='1D')
# 滚动窗口验证
cv_df = nf.cross_validation(df=df, n_windows=len(X_test))
技术要点解析
-
窗口大小选择:
input_size
参数决定了模型观察的历史窗口长度,应根据数据周期特性合理设置 -
预测步长控制:
h
参数决定了每次预测的未来时间点数,设置为1可实现单步滚动预测 -
数据分割策略:
n_windows=len(X_test)
确保每个测试点都作为独立的预测窗口起点 -
模型容量配置:通过
encoder_hidden_size
等参数调整模型复杂度,平衡拟合能力与泛化性能
最佳实践建议
-
对于长期依赖的时间序列,适当增大
input_size
以捕获更长历史模式 -
在多变量预测场景中,考虑使用
local_scaler_type
进行特征归一化 -
通过交叉验证选择最优模型参数,避免过拟合
-
监控验证集损失曲线,及时调整训练策略
滚动窗口预测是评估时间序列模型实际表现的有力工具,掌握NeuralForecast中的实现方法能够帮助数据科学家更准确地评估模型在真实场景中的预测能力。通过合理配置窗口参数和模型结构,可以在各种业务场景中获得可靠的预测结果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~056CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58