在Darts项目中实现基于历史预测的未来协变量训练数据集
2025-05-27 03:05:27作者:咎竹峻Karen
背景介绍
在时间序列预测领域,使用未来协变量(future covariates)是提高模型预测精度的重要手段。然而,当这些未来协变量本身也是预测值(如天气预报)并且会随着时间推移不断更新时,如何正确构建训练数据集就成为一个技术挑战。
问题本质
传统的时间序列预测模型在处理未来协变量时,通常假设这些协变量在预测时是已知的。但在实际应用中,很多未来协变量(如天气预报)本身就是预测结果,并且会随着时间推移不断更新。这就需要在模型训练时,能够使用历史上对未来协变量的预测值,而不是最终的真实值。
技术解决方案
在Darts项目中,我们可以通过自定义数据集类来实现这一需求。具体需要以下步骤:
1. 继承GenericShiftedDataset类
首先需要创建一个自定义的GenericShiftedDataset子类,重写__getitem__方法以实现对未来协变量的特殊处理:
class CustomGSD(GenericShiftedDataset):
def __getitem__(self, idx):
# 原有逻辑...
# 新增的未来协变量处理逻辑
if covariate_series is not None and self.covariate_type != CovariateType.PAST:
fc_idx = idx % self.max_samples_per_ts
covariate_series = covariate_series[fc_idx]
if not covariate_series.has_same_time_as(target_series):
raise ValueError("未来协变量必须与目标序列具有相同的时间索引")
# 继续原有逻辑...
2. 创建混合协变量数据集
根据模型类型(如TiDE、TFT等),创建对应的混合协变量数据集类:
class CustomMCSD(MixedCovariatesSequentialDataset):
def __init__(self, target_series, past_covariates=None, future_covariates=None,
input_chunk_length=12, output_chunk_length=1, output_chunk_shift=0,
max_samples_per_ts=None, use_static_covariates=True, sample_weight=None):
# 初始化三个数据集实例
self.ds_past = CustomGSD(...) # 处理过去协变量
self.ds_historic_future = CustomGSD(...) # 处理历史未来协变量
self.ds_future = CustomGSD(...) # 处理未来协变量
def __getitem__(self, idx):
# 从三个数据集中分别获取数据
past_target, past_covariate, static_covariate, sample_weight, future_target = self.ds_past[idx]
_, historic_future_covariate, _, _, _ = self.ds_historic_future[idx]
_, future_covariate, _, _, _ = self.ds_future[idx]
return (past_target, past_covariate, historic_future_covariate,
future_covariate, static_covariate, sample_weight, future_target)
3. 数据集使用示例
创建并验证自定义数据集:
# 定义输入输出长度
input_length, output_length = 5, 2
# 创建目标序列和未来协变量
series = linear_timeseries(length=input_length + output_length + 1).astype(np.float32)
fc1 = series + 1 # 第一个未来协变量版本
fc2 = series + 2 # 第二个未来协变量版本
# 创建自定义数据集
dataset = CustomMCSD(
target_series=[series],
future_covariates=[[fc1, fc2]], # 注意这里是列表的列表
input_chunk_length=input_length,
output_chunk_length=output_length
)
# 验证数据集
assert len(dataset) == 2
assert (dataset[0][2] == dataset[0][0] + 1).all() # 验证第一个样本的协变量
assert (dataset[1][2] == dataset[1][0] + 2).all() # 验证第二个样本的协变量
4. 模型训练
最后,使用自定义数据集训练模型:
from darts.models import TiDEModel
model = TiDEModel(input_length, output_length)
model.fit_from_dataset(dataset)
技术要点
-
未来协变量处理:关键在于识别每个训练样本对应的历史预测版本,确保使用正确的未来协变量值。
-
数据集设计:采用分层设计,分别处理过去协变量、历史未来协变量和未来协变量。
-
时间索引一致性:要求所有未来协变量序列必须与目标序列具有相同的时间索引,这是实现方案的前提条件。
-
灵活性:该方案可以适配Darts中支持混合协变量的各种模型,如TiDE、TFT等。
应用场景
这种技术方案特别适用于以下场景:
- 天气预报作为协变量的预测问题
- 经济指标预测中使用的专家预测数据
- 任何协变量本身也是预测结果的应用场景
总结
通过自定义Darts中的数据集类,我们实现了在模型训练时使用历史上对未来协变量的预测值,而不是最终的真实值。这种方法更加贴近实际应用场景,能够提高模型在真实环境中的预测性能。实现的关键在于正确识别每个训练样本对应的协变量版本,并确保时间索引的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
290
322
暂无简介
Dart
730
176
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
249
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885