在Darts项目中实现基于历史预测的未来协变量训练数据集
2025-05-27 02:14:57作者:咎竹峻Karen
背景介绍
在时间序列预测领域,使用未来协变量(future covariates)是提高模型预测精度的重要手段。然而,当这些未来协变量本身也是预测值(如天气预报)并且会随着时间推移不断更新时,如何正确构建训练数据集就成为一个技术挑战。
问题本质
传统的时间序列预测模型在处理未来协变量时,通常假设这些协变量在预测时是已知的。但在实际应用中,很多未来协变量(如天气预报)本身就是预测结果,并且会随着时间推移不断更新。这就需要在模型训练时,能够使用历史上对未来协变量的预测值,而不是最终的真实值。
技术解决方案
在Darts项目中,我们可以通过自定义数据集类来实现这一需求。具体需要以下步骤:
1. 继承GenericShiftedDataset类
首先需要创建一个自定义的GenericShiftedDataset子类,重写__getitem__方法以实现对未来协变量的特殊处理:
class CustomGSD(GenericShiftedDataset):
def __getitem__(self, idx):
# 原有逻辑...
# 新增的未来协变量处理逻辑
if covariate_series is not None and self.covariate_type != CovariateType.PAST:
fc_idx = idx % self.max_samples_per_ts
covariate_series = covariate_series[fc_idx]
if not covariate_series.has_same_time_as(target_series):
raise ValueError("未来协变量必须与目标序列具有相同的时间索引")
# 继续原有逻辑...
2. 创建混合协变量数据集
根据模型类型(如TiDE、TFT等),创建对应的混合协变量数据集类:
class CustomMCSD(MixedCovariatesSequentialDataset):
def __init__(self, target_series, past_covariates=None, future_covariates=None,
input_chunk_length=12, output_chunk_length=1, output_chunk_shift=0,
max_samples_per_ts=None, use_static_covariates=True, sample_weight=None):
# 初始化三个数据集实例
self.ds_past = CustomGSD(...) # 处理过去协变量
self.ds_historic_future = CustomGSD(...) # 处理历史未来协变量
self.ds_future = CustomGSD(...) # 处理未来协变量
def __getitem__(self, idx):
# 从三个数据集中分别获取数据
past_target, past_covariate, static_covariate, sample_weight, future_target = self.ds_past[idx]
_, historic_future_covariate, _, _, _ = self.ds_historic_future[idx]
_, future_covariate, _, _, _ = self.ds_future[idx]
return (past_target, past_covariate, historic_future_covariate,
future_covariate, static_covariate, sample_weight, future_target)
3. 数据集使用示例
创建并验证自定义数据集:
# 定义输入输出长度
input_length, output_length = 5, 2
# 创建目标序列和未来协变量
series = linear_timeseries(length=input_length + output_length + 1).astype(np.float32)
fc1 = series + 1 # 第一个未来协变量版本
fc2 = series + 2 # 第二个未来协变量版本
# 创建自定义数据集
dataset = CustomMCSD(
target_series=[series],
future_covariates=[[fc1, fc2]], # 注意这里是列表的列表
input_chunk_length=input_length,
output_chunk_length=output_length
)
# 验证数据集
assert len(dataset) == 2
assert (dataset[0][2] == dataset[0][0] + 1).all() # 验证第一个样本的协变量
assert (dataset[1][2] == dataset[1][0] + 2).all() # 验证第二个样本的协变量
4. 模型训练
最后,使用自定义数据集训练模型:
from darts.models import TiDEModel
model = TiDEModel(input_length, output_length)
model.fit_from_dataset(dataset)
技术要点
-
未来协变量处理:关键在于识别每个训练样本对应的历史预测版本,确保使用正确的未来协变量值。
-
数据集设计:采用分层设计,分别处理过去协变量、历史未来协变量和未来协变量。
-
时间索引一致性:要求所有未来协变量序列必须与目标序列具有相同的时间索引,这是实现方案的前提条件。
-
灵活性:该方案可以适配Darts中支持混合协变量的各种模型,如TiDE、TFT等。
应用场景
这种技术方案特别适用于以下场景:
- 天气预报作为协变量的预测问题
- 经济指标预测中使用的专家预测数据
- 任何协变量本身也是预测结果的应用场景
总结
通过自定义Darts中的数据集类,我们实现了在模型训练时使用历史上对未来协变量的预测值,而不是最终的真实值。这种方法更加贴近实际应用场景,能够提高模型在真实环境中的预测性能。实现的关键在于正确识别每个训练样本对应的协变量版本,并确保时间索引的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355