Supervision项目扩展YOLO格式数据集加载功能以支持OBB标注
2025-05-07 17:24:00作者:廉彬冶Miranda
在计算机视觉领域,目标检测是一个基础且重要的任务。随着技术的进步,传统的轴对齐边界框(Axis-Aligned Bounding Boxes)已经不能满足所有场景的需求,特别是在处理旋转物体时。为此,Supervision项目在0.18.0版本中引入了对定向边界框(Oriented Bounding Boxes,简称OBB)的初步支持。
OBB标注格式解析
OBB标注与传统的矩形框标注不同,它能够更精确地描述旋转物体的边界。在YOLO OBB格式中,每个标注点由9个值组成:
- 第一个值表示类别索引
- 后续8个值分别表示四个角点的x、y坐标(x1,y1,x2,y2,x3,y3,x4,y4)
这些坐标值都是归一化的,范围在0到1之间,使用时需要乘以图像的宽度和高度来获得实际像素坐标。
功能实现要点
Supervision项目需要扩展其DetectionDataset.from_yolo方法以支持OBB格式的数据集加载。核心修改集中在load_yolo_annotations函数中,主要涉及以下方面:
- 标注解析逻辑:需要区分传统矩形框标注和OBB标注的解析方式
- 数据结构调整:OBB标注需要存储在
Detections对象的xyxyxyxy字段中 - 坐标转换处理:将归一化的OBB坐标转换为实际像素坐标
技术实现细节
在实现过程中,开发者需要注意以下几点:
- 向后兼容性:确保新功能不影响现有矩形框标注的加载
- 性能考虑:处理大量OBB标注时的效率问题
- 数据验证:对输入的OBB标注数据进行有效性检查
- 与现有功能集成:确保OBB标注能够与Supervision的其他功能(如可视化)无缝配合
应用场景与优势
OBB支持将为以下场景带来显著改进:
- 遥感图像分析(如飞机、车辆检测)
- 文档分析与识别
- 工业场景中的零件检测
- 任何包含大量旋转物体的场景
相比传统矩形框,OBB能够:
- 更精确地框选旋转物体
- 减少背景干扰
- 提高后续处理(如分割、识别)的准确性
总结
Supervision项目对OBB标注的支持扩展了其在计算机视觉任务中的应用范围,特别是在处理旋转物体方面。这一功能的实现不仅需要技术上的精确处理,还需要考虑与现有生态的兼容性。随着OBB在更多场景中的应用,这一功能将成为Supervision项目的重要特性之一。
对于开发者而言,理解OBB的标注格式和实现原理,将有助于更好地利用这一功能解决实际问题。未来,随着计算机视觉技术的发展,我们可能会看到更多针对特定场景优化的标注格式和相应的支持功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19