推荐项目:Task-aligned One-stage Object Detection(TOOD) - ICCV 2021 Oral
项目介绍
Task-aligned One-stage Object Detection,简称TOOD,是一个革命性的计算机视觉技术,首次提出在单阶段检测器中通过学习方式实现对象分类和定位子任务的对齐。这个开源项目旨在解决传统一阶段检测器中可能出现的任务空间错位问题,从而提高模型的性能和效率。TOOD由MMDetection框架支持,并在MS-COCO数据集上取得了显著的成果。
项目技术分析
TOOD的核心创新点包括:
-
Task-aligned Head (T-Head):这是一个新的头部设计,它在保持学习交互性和任务特定特征之间平衡的同时,引入了任务对齐预测器,增加了学习任务对齐的灵活性。
-
Task Alignment Learning (TAL):这是一种训练策略,通过定制的样本分配方案和任务对齐损失函数,使得分类和定位两个子任务在训练过程中逐步接近最优锚点。
项目的总体结构清晰,如图所示,展示了如何通过T-Head和TAL改进传统的并行分支架构。
项目及技术应用场景
TOOD适用于广泛的实时目标检测场景,包括但不限于自动驾驶、视频监控、机器人导航、图像分析和智能安全等领域。由于其高效的性能和较低的计算资源需求,TOOD特别适合于资源有限但需要高性能目标检测的应用。
项目特点
-
卓越性能:TOOD在MS-COCO上的单模型单尺度测试达到了51.1的AP值,远超同类一阶段检测器。
-
任务对齐:采用TAL确保分类和定位任务的更好对齐,减少了预测之间的空间不匹配。
-
轻量级设计:与ATSS(47.7 AP)、GFL(48.2 AP)和PAA(49.0 AP)等相比,TOOD拥有更少的参数和更低的FLOPs,但仍能提供更高的精度。
-
易于集成:基于MMDetection框架,TOOD方便地融入现有系统或作为新项目的基础。
-
模型库丰富:提供多种预训练模型供用户选择,包括不同网络结构和训练设置。
如果你正在寻找一个优化的、高效率的目标检测解决方案,TOOD无疑是值得尝试的选择。立即加入社区,体验这一前沿技术带来的优势吧!
引用
如果你在研究中受益于TOOD,请引用以下论文:
@inproceedings{feng2021tood,
title={TOOD: Task-aligned One-stage Object Detection},
author={Feng, Chengjian and Zhong, Yujie and Gao, Yu and Scott, Matthew R and Huang, Weilin},
booktitle={ICCV},
year={2021}
}
现在就开始你的TOOD之旅吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00