推荐项目:Task-aligned One-stage Object Detection(TOOD) - ICCV 2021 Oral
项目介绍
Task-aligned One-stage Object Detection,简称TOOD,是一个革命性的计算机视觉技术,首次提出在单阶段检测器中通过学习方式实现对象分类和定位子任务的对齐。这个开源项目旨在解决传统一阶段检测器中可能出现的任务空间错位问题,从而提高模型的性能和效率。TOOD由MMDetection框架支持,并在MS-COCO数据集上取得了显著的成果。
项目技术分析
TOOD的核心创新点包括:
-
Task-aligned Head (T-Head):这是一个新的头部设计,它在保持学习交互性和任务特定特征之间平衡的同时,引入了任务对齐预测器,增加了学习任务对齐的灵活性。
-
Task Alignment Learning (TAL):这是一种训练策略,通过定制的样本分配方案和任务对齐损失函数,使得分类和定位两个子任务在训练过程中逐步接近最优锚点。
项目的总体结构清晰,如图所示,展示了如何通过T-Head和TAL改进传统的并行分支架构。
项目及技术应用场景
TOOD适用于广泛的实时目标检测场景,包括但不限于自动驾驶、视频监控、机器人导航、图像分析和智能安全等领域。由于其高效的性能和较低的计算资源需求,TOOD特别适合于资源有限但需要高性能目标检测的应用。
项目特点
-
卓越性能:TOOD在MS-COCO上的单模型单尺度测试达到了51.1的AP值,远超同类一阶段检测器。
-
任务对齐:采用TAL确保分类和定位任务的更好对齐,减少了预测之间的空间不匹配。
-
轻量级设计:与ATSS(47.7 AP)、GFL(48.2 AP)和PAA(49.0 AP)等相比,TOOD拥有更少的参数和更低的FLOPs,但仍能提供更高的精度。
-
易于集成:基于MMDetection框架,TOOD方便地融入现有系统或作为新项目的基础。
-
模型库丰富:提供多种预训练模型供用户选择,包括不同网络结构和训练设置。
如果你正在寻找一个优化的、高效率的目标检测解决方案,TOOD无疑是值得尝试的选择。立即加入社区,体验这一前沿技术带来的优势吧!
引用
如果你在研究中受益于TOOD,请引用以下论文:
@inproceedings{feng2021tood,
title={TOOD: Task-aligned One-stage Object Detection},
author={Feng, Chengjian and Zhong, Yujie and Gao, Yu and Scott, Matthew R and Huang, Weilin},
booktitle={ICCV},
year={2021}
}
现在就开始你的TOOD之旅吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









