aLRP Loss:统一分类与定位的先进目标检测损失函数
2024-09-26 04:51:07作者:殷蕙予
项目介绍
aLRP Loss(Average Localisation-Recall-Precision Loss)是一种基于排序的平衡损失函数,旨在统一目标检测中的分类与定位任务。该项目是aLRP Loss的官方实现,基于mmdetection框架开发。aLRP Loss通过结合感知器学习的误差驱动更新与反向传播,解决了排序在反向传播中的不可微问题。该损失函数不仅能够强制高置信度的预测具有更好的定位精度,还能显著减少超参数的数量,并保证训练的平衡性。
项目技术分析
aLRP Loss的核心思想是通过Localisation Recall Precision(LRP)误差来训练目标检测器。具体来说,aLRP Loss定义为正样本上的平均LRP误差。为了解决排序在反向传播中的不可微问题,aLRP Loss借鉴了AP Loss的训练方法,并将其推广到基于排序的损失函数中。通过这种方式,aLRP Loss能够有效地关联分类与定位任务,同时减少超参数的数量,确保训练的平衡性。
项目及技术应用场景
aLRP Loss适用于各种目标检测任务,特别是在需要高精度定位和高置信度分类的场景中表现尤为突出。例如:
- 自动驾驶:在自动驾驶系统中,准确的目标检测对于识别道路上的行人、车辆和其他障碍物至关重要。
- 安防监控:在安防监控系统中,aLRP Loss可以帮助系统更准确地识别和定位潜在的安全威胁。
- 医学影像分析:在医学影像分析中,aLRP Loss可以提高病变区域的检测精度,从而辅助医生进行更准确的诊断。
项目特点
- 统一分类与定位:aLRP Loss通过单一的损失函数同时优化分类与定位任务,避免了传统方法中需要分别调整分类与回归损失权重的问题。
- 减少超参数:相比于传统的损失函数组合,aLRP Loss仅有一个超参数,简化了模型的调优过程。
- 保证训练平衡:aLRP Loss通过理论保证训练的平衡性,避免了训练过程中可能出现的偏差问题。
- 高性能:在多个基准数据集上的实验结果表明,aLRP Loss在目标检测任务中表现优异,尤其是在高精度定位和高置信度分类方面。
总结
aLRP Loss作为一种先进的损失函数,通过统一分类与定位任务,显著提升了目标检测的性能。其简洁的设计和高效的训练过程使其在各种应用场景中具有广泛的应用前景。如果你正在寻找一种能够同时优化分类与定位任务的损失函数,aLRP Loss无疑是一个值得尝试的选择。
参考文献
- Oksuz K, Cam BC, Akbas E, Kalkan S, Localization recall precision (LRP): A new performance metric for object detection, ECCV 2018.
- Chen K, Li J, Lin W, See J, Wang J, Duan L, Chen Z, He C, Zou J, Towards Accurate One-Stage Object Detection With AP-Loss, CVPR 2019 & TPAMI.
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874