TransDiff 的项目扩展与二次开发
2025-06-24 08:06:21作者:秋泉律Samson
项目的基础介绍
TransDiff 是一个基于 PyTorch 的开源项目,旨在将自回归 Transformer 和扩散模型与多参考自回归(MRAR)相结合。该项目提供了一个简单的 PyTorch 实现,并包含了在 ImageNet 256x256 和 512x512 上预训练的类条件 TransDiff 模型。此外,该项目还提供了一个运行各种预训练 TransDiff 模型的笔记本和训练评估脚本。
项目的核心功能
TransDiff 的核心功能包括:
- TransDiff 模型及其 MRAR 版本的实现
- 预训练的类条件 TransDiff 模型
- 一个可运行的笔记本,用于运行各种预训练 TransDiff 模型
- 使用 PyTorch DDP 的 TransDiff 训练和评估脚本
项目使用了哪些框架或库?
TransDiff 项目使用了以下框架和库:
- PyTorch
- timm
- MAR
项目的代码目录及介绍
TransDiff 项目的代码目录如下所示:
TransDiff/
├── fid_stats/
├── figs/
├── models/
├── util/
├── LICENSE
├── README.md
├── demo.ipynb
├── engine.py
├── engine_mrar.py
├── environment.yaml
├── main.py
├── main_cache.py
└── README.md
其中:
fid_stats/:用于存储 ImageNet 512x512 评估所需的文件figs/:用于存储图表和可视化结果models/:包含 TransDiff 模型和 MRAR 相关的代码util/:包含一些工具函数和类LICENSE:项目的许可证文件README.md:项目的自述文件demo.ipynb:用于运行各种预训练 TransDiff 模型的笔记本engine.py:TransDiff 模型的核心代码engine_mrar.py:MRAR 版本的 TransDiff 模型的核心代码environment.yaml:创建和激活 Conda 环境的文件main.py:TransDiff 训练和评估脚本main_cache.py:用于缓存 VAE 潜在的脚本
对项目进行扩展或者二次开发的方向
TransDiff 项目的扩展或二次开发方向包括:
- 尝试不同的模型架构,例如使用其他类型的 Transformer 或扩散模型
- 在不同的数据集上训练和评估模型,例如 CIFAR-10 或 COCO
- 开发新的数据增强方法,以进一步提高模型性能
- 实现更高级的评估指标,例如 IS(Inception Score)和 FID(Fréchet Inception Distance)
- 将 TransDiff 应用于不同的任务,例如图像生成、图像编辑或图像修复
希望这些信息能帮助您了解 TransDiff 项目,并为您的扩展和二次开发工作提供一些思路。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217