时空分割:Minkowski卷积神经网络的强大应用
2024-09-23 09:42:41作者:秋泉律Samson
项目介绍
Spatio-Temporal Segmentation 是一个基于Minkowski卷积神经网络(Minkowski Convolutional Neural Networks)的开源项目,旨在解决4D时空数据的分割问题。该项目源自CVPR'19的论文《4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks》,并提供了完整的代码实现。通过该项目,用户可以轻松地训练和评估在ScanNet、Synthia 4D和Stanford 3D等数据集上的模型,实现高效的时空数据分割。
项目技术分析
核心技术
- Minkowski Engine:作为项目的核心依赖,Minkowski Engine是一个用于稀疏张量的神经网络库,支持高效的稀疏卷积操作。它能够在不牺牲性能的情况下,处理大规模的稀疏数据,非常适合时空数据的处理。
- 4D Spatio-Temporal ConvNets:项目采用了4D时空卷积网络,通过引入Minkowski卷积,能够在高维空间中进行高效的特征提取和分割。
技术栈
- 操作系统:Ubuntu 14.04或更高版本
- CUDA:10.1或更高版本
- PyTorch:1.3或更高版本
- Python:3.6或更高版本
- GCC:6或更高版本
项目及技术应用场景
应用场景
- 自动驾驶:在自动驾驶领域,时空分割技术可以用于实时处理和分割车辆周围的3D点云数据,帮助车辆识别和理解周围环境。
- 机器人导航:机器人需要实时处理和理解周围的三维环境,时空分割技术可以帮助机器人更准确地进行路径规划和避障。
- 增强现实(AR):在AR应用中,时空分割技术可以用于实时分割和重建现实世界的三维场景,提升AR体验的真实感和沉浸感。
数据集支持
- ScanNet:一个大规模的室内场景数据集,包含丰富的三维点云数据。
- Synthia 4D:一个用于自动驾驶研究的合成数据集,包含四维时空数据。
- Stanford 3D:斯坦福大学提供的3D数据集,包含多个室内场景的三维点云数据。
项目特点
高效性
- 内存优化:自2020年5月19日以来的最新版本,Minkowski Engine不再需要显式缓存清除,能够更高效地利用内存。
- 性能稳定:尽管在早期版本中存在一些训练脚本的bug,但开发者已经创建了新的仓库SpatioTemporalSegmentation-ScanNet,确保了模型的目标性能。
易用性
- 简单安装:通过pip或anaconda,用户可以轻松安装PyTorch和Minkowski Engine,并快速上手项目。
- 详细文档:项目提供了详细的安装和使用指南,以及常见问题的解决方案,帮助用户快速解决问题。
强大的模型支持
- 模型库:项目提供了多个预训练模型,用户可以直接下载并使用这些模型进行推理或进一步训练,节省了大量的训练时间。
- 多数据集支持:项目支持ScanNet、Synthia 4D和Stanford 3D等多个数据集,用户可以根据自己的需求选择合适的数据集进行训练和评估。
结语
Spatio-Temporal Segmentation 项目不仅提供了强大的时空分割技术,还通过Minkowski Engine实现了高效的稀疏数据处理。无论是自动驾驶、机器人导航还是增强现实,该项目都能为用户提供强大的技术支持。如果你正在寻找一个高效、易用的时空分割解决方案,不妨试试这个开源项目,相信它会给你带来意想不到的惊喜!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178