探索未来空间时间分割:Minkowski Engine赋能深度学习
2024-05-23 03:37:46作者:卓艾滢Kingsley
在这个快速发展的技术时代,我们正目睹着4D空间时间分割领域的新突破。SpatioTemporalSegmentation是一个创新的开源项目,它基于CVPR'19提出的Minkowski Convolutional Neural Networks(Minkowski CNNs)。这个项目不仅提供了实现4D时空卷积网络的代码,而且其强大的Minkowski Engine库也使得在处理稀疏数据时更为高效。
项目介绍
SpatioTemporalSegmentation旨在解决空间和时间维度上的分割问题,特别适用于理解3D点云中的复杂场景。通过利用Minkowski Engine,该项目提供了一种能够处理3D点云数据的新型4D卷积操作,实现对场景的高精度时空分割。
项目技术分析
核心是Minkowski Engine,这是一个专门为稀疏张量设计的神经网络库。与传统的全连接层不同,Minkowski Engine的4D卷积允许在网络中直接处理稀疏数据,降低了内存消耗,并提高了计算效率。该引擎支持CUDA,可以在GPU上加速运算,为大型4D数据集提供实时处理可能。
项目及技术应用场景
- 3D扫描网络分割:SpatioTemporalSegmentation可以应用于如ScanNet等真实世界3D室内环境数据集,进行精细化的语义分割,识别墙壁、地板、家具等元素。
- 4D合成数据分割:在Synthia 4D数据集上训练模型,可以模拟真实世界的复杂场景,预测物体动态变化。
- 斯坦福3D数据集:可以用于建筑结构的分割和分析,对建筑物内部结构有深入理解。
项目特点
- 高效稀疏运算:Minkowski Engine实现了稀疏4D卷积,减少了不必要的计算和存储开销。
- 灵活多样的网络架构:支持多种不同规模的网络,如Mink16UNet34C和Mink16UNet18,以适应不同任务的需求。
- 直观的应用示例:提供demo代码,用户可快速体验到时空分割的魅力。
- 卓越的性能表现:预训练模型在ScanNet、Stanford 3D和Synthia数据集上展示了优秀的效果,验证了方法的准确性。
要开始探索这个前沿项目,请确保满足硬件和软件需求,然后按照提供的安装指南进行操作。无论是研究人员还是开发者,SpatioTemporalSegmentation都是一个值得尝试的工具,它将帮助你在4D时空分割领域开辟新的道路。别忘了引用相关工作,感谢贡献者的辛勤付出!
@inproceedings{choy20194d,
title={4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks},
author={Choy, Christopher and Gwak, JunYoung and Savarese, Silvio},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3075--3084},
year={2019}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246