探索未来空间时间分割:Minkowski Engine赋能深度学习
2024-05-23 03:37:46作者:卓艾滢Kingsley
在这个快速发展的技术时代,我们正目睹着4D空间时间分割领域的新突破。SpatioTemporalSegmentation是一个创新的开源项目,它基于CVPR'19提出的Minkowski Convolutional Neural Networks(Minkowski CNNs)。这个项目不仅提供了实现4D时空卷积网络的代码,而且其强大的Minkowski Engine库也使得在处理稀疏数据时更为高效。
项目介绍
SpatioTemporalSegmentation旨在解决空间和时间维度上的分割问题,特别适用于理解3D点云中的复杂场景。通过利用Minkowski Engine,该项目提供了一种能够处理3D点云数据的新型4D卷积操作,实现对场景的高精度时空分割。
项目技术分析
核心是Minkowski Engine,这是一个专门为稀疏张量设计的神经网络库。与传统的全连接层不同,Minkowski Engine的4D卷积允许在网络中直接处理稀疏数据,降低了内存消耗,并提高了计算效率。该引擎支持CUDA,可以在GPU上加速运算,为大型4D数据集提供实时处理可能。
项目及技术应用场景
- 3D扫描网络分割:SpatioTemporalSegmentation可以应用于如ScanNet等真实世界3D室内环境数据集,进行精细化的语义分割,识别墙壁、地板、家具等元素。
- 4D合成数据分割:在Synthia 4D数据集上训练模型,可以模拟真实世界的复杂场景,预测物体动态变化。
- 斯坦福3D数据集:可以用于建筑结构的分割和分析,对建筑物内部结构有深入理解。
项目特点
- 高效稀疏运算:Minkowski Engine实现了稀疏4D卷积,减少了不必要的计算和存储开销。
- 灵活多样的网络架构:支持多种不同规模的网络,如Mink16UNet34C和Mink16UNet18,以适应不同任务的需求。
- 直观的应用示例:提供demo代码,用户可快速体验到时空分割的魅力。
- 卓越的性能表现:预训练模型在ScanNet、Stanford 3D和Synthia数据集上展示了优秀的效果,验证了方法的准确性。
要开始探索这个前沿项目,请确保满足硬件和软件需求,然后按照提供的安装指南进行操作。无论是研究人员还是开发者,SpatioTemporalSegmentation都是一个值得尝试的工具,它将帮助你在4D时空分割领域开辟新的道路。别忘了引用相关工作,感谢贡献者的辛勤付出!
@inproceedings{choy20194d,
title={4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks},
author={Choy, Christopher and Gwak, JunYoung and Savarese, Silvio},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3075--3084},
year={2019}
}
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
215
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818