LangServe项目中RunnableWithMessageHistory与聊天交互的集成实践
2025-07-04 05:05:57作者:霍妲思
在LangServe项目开发过程中,许多开发者尝试将RunnableWithMessageHistory与聊天交互功能集成时遇到了类型错误问题。本文将深入分析问题本质,并提供完整的解决方案。
问题背景分析
当开发者尝试在FastAPI应用中同时使用RunnableWithMessageHistory和playground_type='chat'参数时,系统会抛出"TypeError: issubclass() arg 1 must be a class"错误。这个错误表面看似简单,但实际上反映了LangChain核心组件与Pydantic模型之间的兼容性问题。
根本原因探究
经过技术分析,该问题主要源于以下两个技术点:
- RunnableWithMessageHistory的输出模式处理机制存在缺陷,特别是在处理输出模式时未能正确识别Pydantic模型类
- LangServe的聊天交互功能对输入输出格式有严格要求,需要特定的消息结构
完整解决方案
基础配置
首先确保开发环境配置正确:
from fastapi import FastAPI
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.memory import InMemoryChatMessageHistory
from pydantic import BaseModel, Field
from typing import List, Union
核心组件实现
- 定义LLM模型和提示模板:
prompt = ChatPromptTemplate.from_messages([
("system", "您是一个专业的AI助手..."),
MessagesPlaceholder(variable_name="messages"),
])
chain = prompt | llm | StrOutputParser()
- 实现消息历史管理:
def get_session_history():
return InMemoryChatMessageHistory()
- 定义输入模型:
class InputChat(BaseModel):
messages: List[Union[HumanMessage, AIMessage, SystemMessage]] = Field(
...,
description="当前对话的聊天消息"
)
关键解决方案
通过添加输出解析器解决类型错误:
from langchain_core.output_parsers.string import StrOutputParser
json_parser = StrOutputParser()
chain_with_parser = (
RunnableWithMessageHistory(
chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history"
).with_types(input_type=InputChat)
| json_parser
)
路由配置
add_routes(
app,
chain_with_parser,
path="/chat",
playground_type="default" # 注意此处使用默认playground
)
技术要点说明
-
输出解析器的作用:StrOutputParser在这里不仅处理输出格式,还解决了RunnableWithMessageHistory与Pydantic的兼容性问题
-
聊天交互限制:LangServe的聊天playground对输入格式有严格要求,开发者需要注意:
- 必须使用特定格式的消息字典
- 输出必须是AIMessage或字符串
-
版本兼容性:确认使用Pydantic 2.8.2和pydantic-core 2.20.1版本组合
进阶建议
对于需要完整聊天交互功能的开发者,可以考虑:
- 自定义输入处理器,确保符合LangServe的聊天playground要求
- 实现中间件转换层,处理不同格式的消息转换
- 考虑使用Redis等持久化存储替代内存存储,提高生产环境可靠性
通过本文的解决方案,开发者可以顺利实现带有历史记忆功能的LangServe应用,同时理解底层技术原理,为更复杂的应用场景打下基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1