PEFT项目中使用LoRA微调ChatGLM3-6B模型的注意事项
2025-05-12 00:11:25作者:韦蓉瑛
在自然语言处理领域,使用参数高效微调技术(PEFT)结合低秩适应(LoRA)对大型语言模型进行微调已成为一种流行方法。本文将重点讨论在使用PEFT库微调ChatGLM3-6B模型时遇到的一个典型问题及其解决方案。
问题现象
当开发者尝试使用PEFT的LoRA方法微调ChatGLM3-6B模型时,可能会遇到以下错误:
TypeError: ChatGLMForConditionalGeneration.forward() got an unexpected keyword argument 'decoder_input_ids'
这个错误通常发生在将任务类型(TaskType)错误地设置为SEQ_2_SEQ_LM(序列到序列语言模型)时。错误的核心在于模型架构与任务类型不匹配。
根本原因分析
ChatGLM3-6B本质上是一个因果语言模型(Causal LM),属于仅解码器(decoder-only)架构。而SEQ_2_SEQ_LM任务类型是为编码器-解码器(encoder-decoder)架构设计的,如T5或BART这类模型。
关键区别在于:
- 因果语言模型:单向注意力机制,适合生成任务
- 序列到序列模型:包含编码器和解码器两部分,适合翻译、摘要等任务
当开发者错误地将仅解码器模型配置为序列到序列任务时,训练过程会尝试传递decoder_input_ids参数,而ChatGLM3-6B的前向传播方法并不接受这个参数,从而导致上述错误。
正确配置方法
对于ChatGLM3-6B这类因果语言模型,正确的LoRA配置应该是:
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.1,
bias="none",
task_type=TaskType.CAUSAL_LM, # 使用CAUSAL_LM而非SEQ_2_SEQ_LM
)
模型架构与任务类型的匹配原则
在实际应用中,理解模型架构与任务类型的匹配关系至关重要:
- 因果语言模型(CAUSAL_LM):适用于GPT系列、ChatGLM等仅解码器架构,用于文本生成、对话等任务
- 序列到序列模型(SEQ_2_SEQ_LM):适用于T5、BART等编码器-解码器架构,用于翻译、摘要等任务
- 特征提取(FEATURE_EXTRACTION):当只需要获取模型输出的隐藏状态时使用
虽然某些情况下可以通过适配器将一种架构用于不同任务(如将因果LM用于序列分类),但这种跨架构使用需要特别注意参数和方法的兼容性。
最佳实践建议
- 在配置LoRA前,务必查阅模型文档确认其架构类型
- 使用AutoModelForCausalLM而非AutoModelForSeq2SeqLM加载仅解码器模型
- 当不确定模型架构时,可以通过检查模型的config或尝试简单的前向传递来验证
- 保持PEFT库和Transformers库的版本更新,以获得最佳的兼容性
通过正确理解模型架构与任务类型的关系,开发者可以避免这类配置错误,更高效地利用PEFT进行模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1