PEFT项目中使用LoRA微调ChatGLM3-6B模型的注意事项
2025-05-12 00:11:25作者:韦蓉瑛
在自然语言处理领域,使用参数高效微调技术(PEFT)结合低秩适应(LoRA)对大型语言模型进行微调已成为一种流行方法。本文将重点讨论在使用PEFT库微调ChatGLM3-6B模型时遇到的一个典型问题及其解决方案。
问题现象
当开发者尝试使用PEFT的LoRA方法微调ChatGLM3-6B模型时,可能会遇到以下错误:
TypeError: ChatGLMForConditionalGeneration.forward() got an unexpected keyword argument 'decoder_input_ids'
这个错误通常发生在将任务类型(TaskType)错误地设置为SEQ_2_SEQ_LM(序列到序列语言模型)时。错误的核心在于模型架构与任务类型不匹配。
根本原因分析
ChatGLM3-6B本质上是一个因果语言模型(Causal LM),属于仅解码器(decoder-only)架构。而SEQ_2_SEQ_LM任务类型是为编码器-解码器(encoder-decoder)架构设计的,如T5或BART这类模型。
关键区别在于:
- 因果语言模型:单向注意力机制,适合生成任务
- 序列到序列模型:包含编码器和解码器两部分,适合翻译、摘要等任务
当开发者错误地将仅解码器模型配置为序列到序列任务时,训练过程会尝试传递decoder_input_ids参数,而ChatGLM3-6B的前向传播方法并不接受这个参数,从而导致上述错误。
正确配置方法
对于ChatGLM3-6B这类因果语言模型,正确的LoRA配置应该是:
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.1,
bias="none",
task_type=TaskType.CAUSAL_LM, # 使用CAUSAL_LM而非SEQ_2_SEQ_LM
)
模型架构与任务类型的匹配原则
在实际应用中,理解模型架构与任务类型的匹配关系至关重要:
- 因果语言模型(CAUSAL_LM):适用于GPT系列、ChatGLM等仅解码器架构,用于文本生成、对话等任务
- 序列到序列模型(SEQ_2_SEQ_LM):适用于T5、BART等编码器-解码器架构,用于翻译、摘要等任务
- 特征提取(FEATURE_EXTRACTION):当只需要获取模型输出的隐藏状态时使用
虽然某些情况下可以通过适配器将一种架构用于不同任务(如将因果LM用于序列分类),但这种跨架构使用需要特别注意参数和方法的兼容性。
最佳实践建议
- 在配置LoRA前,务必查阅模型文档确认其架构类型
- 使用AutoModelForCausalLM而非AutoModelForSeq2SeqLM加载仅解码器模型
- 当不确定模型架构时,可以通过检查模型的config或尝试简单的前向传递来验证
- 保持PEFT库和Transformers库的版本更新,以获得最佳的兼容性
通过正确理解模型架构与任务类型的关系,开发者可以避免这类配置错误,更高效地利用PEFT进行模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878