PEFT项目中使用LoRA微调ChatGLM3-6B模型的注意事项
2025-05-12 10:36:40作者:韦蓉瑛
在自然语言处理领域,使用参数高效微调技术(PEFT)结合低秩适应(LoRA)对大型语言模型进行微调已成为一种流行方法。本文将重点讨论在使用PEFT库微调ChatGLM3-6B模型时遇到的一个典型问题及其解决方案。
问题现象
当开发者尝试使用PEFT的LoRA方法微调ChatGLM3-6B模型时,可能会遇到以下错误:
TypeError: ChatGLMForConditionalGeneration.forward() got an unexpected keyword argument 'decoder_input_ids'
这个错误通常发生在将任务类型(TaskType)错误地设置为SEQ_2_SEQ_LM(序列到序列语言模型)时。错误的核心在于模型架构与任务类型不匹配。
根本原因分析
ChatGLM3-6B本质上是一个因果语言模型(Causal LM),属于仅解码器(decoder-only)架构。而SEQ_2_SEQ_LM任务类型是为编码器-解码器(encoder-decoder)架构设计的,如T5或BART这类模型。
关键区别在于:
- 因果语言模型:单向注意力机制,适合生成任务
- 序列到序列模型:包含编码器和解码器两部分,适合翻译、摘要等任务
当开发者错误地将仅解码器模型配置为序列到序列任务时,训练过程会尝试传递decoder_input_ids参数,而ChatGLM3-6B的前向传播方法并不接受这个参数,从而导致上述错误。
正确配置方法
对于ChatGLM3-6B这类因果语言模型,正确的LoRA配置应该是:
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.1,
bias="none",
task_type=TaskType.CAUSAL_LM, # 使用CAUSAL_LM而非SEQ_2_SEQ_LM
)
模型架构与任务类型的匹配原则
在实际应用中,理解模型架构与任务类型的匹配关系至关重要:
- 因果语言模型(CAUSAL_LM):适用于GPT系列、ChatGLM等仅解码器架构,用于文本生成、对话等任务
- 序列到序列模型(SEQ_2_SEQ_LM):适用于T5、BART等编码器-解码器架构,用于翻译、摘要等任务
- 特征提取(FEATURE_EXTRACTION):当只需要获取模型输出的隐藏状态时使用
虽然某些情况下可以通过适配器将一种架构用于不同任务(如将因果LM用于序列分类),但这种跨架构使用需要特别注意参数和方法的兼容性。
最佳实践建议
- 在配置LoRA前,务必查阅模型文档确认其架构类型
- 使用AutoModelForCausalLM而非AutoModelForSeq2SeqLM加载仅解码器模型
- 当不确定模型架构时,可以通过检查模型的config或尝试简单的前向传递来验证
- 保持PEFT库和Transformers库的版本更新,以获得最佳的兼容性
通过正确理解模型架构与任务类型的关系,开发者可以避免这类配置错误,更高效地利用PEFT进行模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882