F2-NeRF 开源项目使用教程
2024-09-14 17:36:37作者:范垣楠Rhoda
1. 项目介绍
F2-NeRF 是一个用于快速神经辐射场训练的开源项目,特别适用于自由相机轨迹的场景。该项目通过引入一种名为 F2-NeRF(Fast-Free-NeRF)的新型网格化 NeRF,能够在几分钟内完成训练,并且支持任意输入相机轨迹。F2-NeRF 的核心创新在于提出了一种新的空间扭曲方法——透视扭曲,使得在网格化 NeRF 框架中能够处理任意轨迹。
2. 项目快速启动
2.1 安装依赖
首先,确保你的系统已经安装了必要的依赖。对于基于 Debian 的 Linux 发行版,可以使用以下命令:
sudo apt install zlib1g-dev
对于基于 Arch 的 Linux 发行版,可以使用以下命令:
sudo pacman -S zlib
2.2 克隆项目仓库
使用 Git 克隆 F2-NeRF 项目仓库:
git clone --recursive https://github.com/Totoro97/f2-nerf.git
cd f2-nerf
2.3 下载预编译的 LibTorch
下载并解压预编译的 LibTorch 库。以下是一个示例命令:
cd External
wget https://download.pytorch.org/libtorch/cu117/libtorch-cxx11-abi-shared-with-deps-1.13.1%2Bcu117.zip
unzip libtorch-cxx11-abi-shared-with-deps-1.13.1%2Bcu117.zip
2.4 编译项目
使用 CMake 编译项目:
cmake -B build
cmake --build build --target main --config RelWithDebInfo -j
2.5 运行训练
使用以下命令启动 F2-NeRF 的训练:
python scripts/run.py --config-name=wanjinyou dataset_name=example case_name=ngp_fox mode=train +work_dir=$(pwd)
3. 应用案例和最佳实践
3.1 数据集准备
F2-NeRF 支持自定义数据集。首先,确保你的图像数据位于以下路径:
/data/<your-dataset-name>/<your-case-name>/images
3.2 运行 COLMAP SfM
使用 COLMAP 进行运动结构恢复(SfM):
bash scripts/local_colmap_and_resize.sh /data/<your-dataset-name>/<your-case-name>
如果 COLMAP 失败,可以使用 hloc:
bash scripts/local_hloc_and_resize.sh /data/<your-dataset-name>/<your-case-name>
3.3 生成相机文件
生成相机文件:
python scripts/colmap2poses.py --data_dir /data/<your-dataset-name>/<your-case-name>
3.4 运行 F2-NeRF
使用以下命令运行 F2-NeRF:
python scripts/run.py --config-name=wanjinyou \
dataset_name=<your-dataset-name> case_name=<your-case-name> mode=train \
+work_dir=$(pwd)
4. 典型生态项目
F2-NeRF 作为一个快速神经辐射场训练工具,可以与其他相关项目结合使用,例如:
- Instant-NGP: 用于快速网格化 NeRF 训练的框架。
- Plenoxels: 另一个用于快速 NeRF 训练的项目。
- TensoRF: 基于张量的辐射场表示方法。
这些项目可以与 F2-NeRF 结合,进一步提升神经辐射场的训练效率和质量。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355