F2-NeRF 开源项目使用教程
2024-09-14 01:38:54作者:范垣楠Rhoda
1. 项目介绍
F2-NeRF 是一个用于快速神经辐射场训练的开源项目,特别适用于自由相机轨迹的场景。该项目通过引入一种名为 F2-NeRF(Fast-Free-NeRF)的新型网格化 NeRF,能够在几分钟内完成训练,并且支持任意输入相机轨迹。F2-NeRF 的核心创新在于提出了一种新的空间扭曲方法——透视扭曲,使得在网格化 NeRF 框架中能够处理任意轨迹。
2. 项目快速启动
2.1 安装依赖
首先,确保你的系统已经安装了必要的依赖。对于基于 Debian 的 Linux 发行版,可以使用以下命令:
sudo apt install zlib1g-dev
对于基于 Arch 的 Linux 发行版,可以使用以下命令:
sudo pacman -S zlib
2.2 克隆项目仓库
使用 Git 克隆 F2-NeRF 项目仓库:
git clone --recursive https://github.com/Totoro97/f2-nerf.git
cd f2-nerf
2.3 下载预编译的 LibTorch
下载并解压预编译的 LibTorch 库。以下是一个示例命令:
cd External
wget https://download.pytorch.org/libtorch/cu117/libtorch-cxx11-abi-shared-with-deps-1.13.1%2Bcu117.zip
unzip libtorch-cxx11-abi-shared-with-deps-1.13.1%2Bcu117.zip
2.4 编译项目
使用 CMake 编译项目:
cmake -B build
cmake --build build --target main --config RelWithDebInfo -j
2.5 运行训练
使用以下命令启动 F2-NeRF 的训练:
python scripts/run.py --config-name=wanjinyou dataset_name=example case_name=ngp_fox mode=train +work_dir=$(pwd)
3. 应用案例和最佳实践
3.1 数据集准备
F2-NeRF 支持自定义数据集。首先,确保你的图像数据位于以下路径:
/data/<your-dataset-name>/<your-case-name>/images
3.2 运行 COLMAP SfM
使用 COLMAP 进行运动结构恢复(SfM):
bash scripts/local_colmap_and_resize.sh /data/<your-dataset-name>/<your-case-name>
如果 COLMAP 失败,可以使用 hloc:
bash scripts/local_hloc_and_resize.sh /data/<your-dataset-name>/<your-case-name>
3.3 生成相机文件
生成相机文件:
python scripts/colmap2poses.py --data_dir /data/<your-dataset-name>/<your-case-name>
3.4 运行 F2-NeRF
使用以下命令运行 F2-NeRF:
python scripts/run.py --config-name=wanjinyou \
dataset_name=<your-dataset-name> case_name=<your-case-name> mode=train \
+work_dir=$(pwd)
4. 典型生态项目
F2-NeRF 作为一个快速神经辐射场训练工具,可以与其他相关项目结合使用,例如:
- Instant-NGP: 用于快速网格化 NeRF 训练的框架。
- Plenoxels: 另一个用于快速 NeRF 训练的项目。
- TensoRF: 基于张量的辐射场表示方法。
这些项目可以与 F2-NeRF 结合,进一步提升神经辐射场的训练效率和质量。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
171
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
454
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119