F2-NeRF 项目使用教程
2024-09-19 09:21:08作者:尤峻淳Whitney
1. 项目目录结构及介绍
f2-nerf/
├── CMakeLists.txt
├── LICENSE
├── README.md
├── data/
│ └── example/
│ └── ngp_fox/
│ ├── images/
│ └── poses_render.npy
├── external/
│ └── libtorch/
├── scripts/
│ ├── colmap2poses.py
│ ├── inter_poses.py
│ ├── local_colmap_and_resize.sh
│ ├── local_hloc_and_resize.sh
│ └── run.py
├── src/
│ ├── main.cpp
│ └── ...
└── static/
└── ...
目录结构说明
- CMakeLists.txt: 项目的CMake构建文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- data/: 存放示例数据集和生成的数据文件。
- example/ngp_fox/: 示例数据集,包含图像和渲染姿势文件。
- external/: 存放外部依赖库,如LibTorch。
- scripts/: 存放项目的脚本文件,用于数据处理和训练。
- colmap2poses.py: 将COLMAP格式转换为项目所需的相机格式。
- inter_poses.py: 生成渲染路径的脚本。
- local_colmap_and_resize.sh: 本地运行COLMAP并调整图像大小的脚本。
- local_hloc_and_resize.sh: 本地运行hloc并调整图像大小的脚本。
- run.py: 运行训练和测试的脚本。
- src/: 存放项目的源代码。
- main.cpp: 项目的启动文件。
- static/: 存放静态资源文件。
2. 项目的启动文件介绍
src/main.cpp
main.cpp
是 F2-NeRF 项目的启动文件。它包含了项目的主要逻辑和初始化代码。通过调用该文件,可以启动训练或测试过程。
主要功能
- 初始化: 初始化项目的配置和依赖库。
- 训练: 根据配置文件进行模型的训练。
- 测试: 加载训练好的模型并进行测试。
3. 项目的配置文件介绍
scripts/run.py
run.py
是项目的主要配置文件,用于配置训练和测试的参数。
主要配置项
- config-name: 配置文件的名称,例如
wanjinyou
。 - dataset_name: 数据集的名称,例如
example
。 - case_name: 数据集中的具体案例名称,例如
ngp_fox
。 - mode: 运行模式,可以是
train
或test
。 - work_dir: 工作目录,通常设置为当前目录
$(pwd)
。
示例配置
python scripts/run.py --config-name=wanjinyou \
dataset_name=example \
case_name=ngp_fox \
mode=train \
+work_dir=$(pwd)
其他配置文件
scripts/colmap2poses.py
: 用于将COLMAP格式的相机参数转换为项目所需的格式。scripts/inter_poses.py
: 用于生成渲染路径的脚本。scripts/local_colmap_and_resize.sh
: 用于本地运行COLMAP并调整图像大小的脚本。scripts/local_hloc_and_resize.sh
: 用于本地运行hloc并调整图像大小的脚本。
通过这些配置文件,用户可以灵活地配置和运行 F2-NeRF 项目。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5