F2-NeRF项目下载及安装教程
2024-12-08 16:48:35作者:仰钰奇
一、项目介绍
F2-NeRF(Fast Neural Radiance Field Training with Free Camera Trajectories)是一个基于神经辐射场(NeRF)的快速训练方法,旨在通过自由相机轨迹实现高质量的3D场景重建。本项目是F2-NeRF的开源实现,由Totoro97在GitHub上发布,采用了LibTorch深度学习框架。
二、项目下载位置
您可以在以下位置找到F2-NeRF项目的开源代码:
项目GitHub地址:https://github.com/Totoro97/f2-nerf.git
三、项目安装环境配置(含图片示例)
1. 安装依赖
根据项目官方说明,首先需要安装zlib依赖。以下是在基于Debian的Linux发行版和Arch Linux上安装zlib依赖的命令:
-
Debian发行版:
sudo apt install zlib1g-dev -
Arch Linux:
sudo pacman -S zlib
2. 克隆项目
使用以下命令克隆项目:
git clone --recursive https://github.com/Totoro97/f2-nerf.git
cd f2-nerf
3. 下载预编译的LibTorch
以下命令展示了如何下载并解压预编译的LibTorch:
cd External
wget https://download.pytorch.org/libtorch/cu117/libtorch-cxx11-abi-shared-with-deps-1.13.1+cu117.zip
unzip /libtorch-cxx11-abi-shared-with-deps-1.13.1+cu117.zip
4. 编译项目
使用CMake进行编译:
cd ..
cmake
cmake --build build --target main --config RelWithDebInfo -j
以下是编译过程中的一个示例图片:
(请替换为实际编译过程的截图)
四、项目安装方式
项目安装主要是编译上述步骤生成的可执行文件,确保正确配置环境后,编译过程将会生成所需的可执行文件。
五、项目处理脚本
项目提供了一些处理脚本,以下是一些常用脚本的示例:
1. 运行训练脚本
python scripts/run.py --config-name=wanjinyou dataset_name=example case_name=ngp_fox mode=train +work_dir=$(pwd)
2. 渲染测试图像
python scripts/run.py --config-name=wanjinyou dataset_name=example case_name=ngp_fox mode=test is_continue=true +work_dir=$(pwd)
3. 生成渲染路径
python scripts/inter_poses.py --data_dir /data/example/ngp_fox --key_poses 5 10 15 20 25 30 35 40 45 49 --n_out_poses 200
然后,使用以下命令进行渲染:
python scripts/run.py --config-name=wanjinyou dataset_name=example case_name=ngp_fox mode=render_path is_continue=true +work_dir=$(pwd)
以上就是F2-NeRF项目的下载与安装教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
195
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692