Fairseq-lua 使用教程
2025-04-17 16:46:48作者:伍霜盼Ellen
1. 项目介绍
Fairseq-lua 是由 Facebook AI Research 开发的一个基于 Lua 的序列到序列学习工具包,专为神经机器翻译(NMT)设计。该工具包实现了卷积神经机器翻译模型和标准的 LSTM 模型,并支持单机多 GPU 训练以及 CPU 和 GPU 上的快速束搜索生成。Fairseq-lua 提供了英法、英德和英罗翻译的预训练模型。
2. 项目快速启动
环境准备
- 操作系统:macOS 或 Linux
- 硬件:NVIDIA GPU(用于训练新模型)
- 软件依赖:Torch、LuaRocks、Intel MKL(推荐)、nccl
安装
# 克隆仓库
git clone https://github.com/facebookresearch/fairseq-lua.git
# 进入项目目录
cd fairseq-lua
# 使用 LuaRocks 安装 fairseq
luarocks make rocks/fairseq-scm-1.rockspec
数据预处理
假设我们使用 IWSLT14 德-英语料库作为示例:
# 准备数据
cd data/
bash prepare-iwslt14.sh
cd ..
# 设置变量
TEXT=data/iwslt14.tokenized.de-en
# 预处理并二进制化数据
fairseq preprocess -sourcelang de -targetlang en \
-trainpref $TEXT/train -validpref $TEXT/valid -testpref $TEXT/test \
-thresholdsrc 3 -thresholdtgt 3 -destdir data-bin/iwslt14.tokenized.de-en
训练模型
# 创建训练目录
mkdir -p trainings/blstm
# 训练双向 LSTM 模型
fairseq train -sourcelang de -targetlang en -datadir data-bin/iwslt14.tokenized.de-en \
-model blstm -nhid 512 -dropout 0.2 -dropout_hid 0 -optim adam -lr 0.0003125 -savedir trainings/blstm
生成翻译
# 设置数据变量
DATA=data-bin/iwslt14.tokenized.de-en
# 生成翻译(以卷积模型为例)
fairseq generate-lines -sourcedict $DATA/dict.de.th7 -targetdict $DATA/dict.en.th7 \
-path trainings/fconv/model_best_opt.th7 -beam 10 -nbest 2
3. 应用案例和最佳实践
(本部分将介绍一些使用 Fairseq-lua 的实际案例和最佳实践,但由于缺乏具体案例信息,这里仅作提示。)
- 案例一:使用 Fairseq-lua 进行英德机器翻译的模型训练和评估。
- 案例二:如何将 Fairseq-lua 集成到现有的 NMT 系统中。
4. 典型生态项目
(本部分将介绍与 Fairseq-lua 相关的典型生态项目,但由于缺乏具体项目信息,这里仅作提示。)
- 项目一:基于 Fairseq-lua 的多语言翻译服务。
- 项目二:利用 Fairseq-lua 进行语音识别数据预处理的研究项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248