Django Ninja 中 ModelSchema 关联对象查询的异步处理技巧
2025-05-28 11:15:39作者:裴麒琰
在使用 Django Ninja 框架开发 REST API 时,ModelSchema 是一个非常方便的工具,它可以帮助我们快速地将 Django 模型转换为 Pydantic 模型。然而,在处理模型关联关系时,特别是在异步视图环境下,开发者可能会遇到一些棘手的问题。
常见问题场景
当我们需要在 ModelSchema 中包含关联模型的数据时,通常会使用 resolve_* 方法来定义。例如,Country 模型有一个到 News 模型的反向关联,我们希望在序列化 Country 时包含其关联的 News 数据。
同步与异步的冲突
在 Django Ninja 的异步视图中直接使用 Django ORM 的同步查询方法(如 all()、order_by() 等)会导致 SynchronousOnlyOperation 错误。这是因为 Django ORM 的许多查询方法在设计上是同步的,而异步视图需要异步操作。
解决方案
方案一:使用同步解析方法
最简单的解决方案是将 resolve_news 方法标记为同步方法:
class CountryRead(ModelSchema):
news: list[NewsRead]
class Config:
model = Country
model_fields = ["id", "name", "created", "modified"]
@staticmethod
def resolve_news(obj):
return list(obj.news.all().order_by("-datetime"))
注意这里使用了 list() 强制立即执行查询,避免惰性查询在异步上下文中执行。
方案二:预取关联数据
更优雅的解决方案是在视图层预先获取关联数据:
class CountryRead(ModelSchema):
news: list[NewsRead] = Field([], alias="prefetched_news")
class Config:
model = Country
model_fields = ["id", "name", "created", "modified"]
@api.get("/country/{id}", response=CountryRead)
async def get_country(request, id: int):
country = await aget_object_or_404(Country, id=id)
country.prefetched_news = [n async for n in country.news.all().order_by("-datetime")]
return country
这种方法有几个优点:
- 明确区分了同步和异步操作
- 可以在视图层控制查询的排序和限制
- 避免了在序列化过程中执行数据库查询
查询优化技巧
当需要限制返回的关联对象数量时,应该使用 Django ORM 的切片查询:
country.prefetched_news = [n async for n in country.news.all().order_by("-datetime")[:5]]
这样生成的 SQL 会包含 LIMIT 子句,比在 Python 中切片更高效。
总结
在 Django Ninja 中处理模型关联关系时,特别是在异步视图环境下,开发者需要注意以下几点:
- 避免在 Pydantic 的解析方法中直接使用 Django ORM 的同步查询
- 考虑在视图层预先获取关联数据
- 使用正确的查询方法优化数据库访问
- 明确区分同步和异步操作边界
通过合理的设计,可以既保持代码的简洁性,又确保性能最优。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193