Bittensor v9.3.0版本发布:增强区块链网络功能与测试覆盖
Bittensor是一个开源的区块链协议,旨在构建去中心化的机器学习网络。该项目通过区块链技术连接全球的计算资源,使机器学习模型能够以去中心化的方式进行训练和推理。最新发布的v9.3.0版本带来了一系列重要的功能增强和稳定性改进,特别是在网络测试覆盖率和区块链操作功能方面有显著提升。
测试覆盖率与稳定性提升
本次更新中,开发团队显著增强了端到端(E2E)测试的覆盖范围。新增了多个测试用例,包括对等待周期(wait_epoch)和下一个节奏(next_tempo)功能的测试验证。这些改进确保了网络在各种条件下的稳定运行,特别是在处理区块链时间相关操作时的可靠性。
测试框架现在支持所有Python版本,并增加了Docker镜像自动更新机制。这意味着开发者可以在不同Python环境下运行测试,同时保持测试环境的时效性。测试容器管理逻辑也得到了优化,新增了停止现有测试容器的功能,避免了测试环境冲突。
区块链操作功能增强
v9.3.0版本引入了多项新的区块链操作方法:
-
新增了
set_children和get_pending_children方法,用于管理子账户关系。这些方法为网络中的账户层级管理提供了更灵活的工具。 -
增加了
get_owned_hotkeys方法及其异步版本,允许用户查询特定账户拥有的所有热键(hotkeys)。这一功能对于账户管理和监控特别有用。 -
改进了CRv3(共识规则版本3)的功能实现,提升了网络的共识机制效率和可靠性。
-
优化了Balance类的魔术方法逻辑,使得代币余额的数学运算更加准确和高效。
网络功能改进
在网络安全方面,本次更新添加了drand承诺机制,增强了网络的随机数生成安全性。同时,改进了区块更新间隔(blocks_since_last_update)的返回逻辑,确保网络状态监控的准确性。
针对子网管理,新增了process_weights_for_netuid功能,允许按子网ID处理权重数据。这一改进使得大规模网络中的权重管理更加高效。
兼容性与依赖管理
v9.3.0版本增加了对Python 3.13的兼容性检查,确保项目能够在新版本Python上正常运行。同时更新了多个依赖项,包括异步substrate接口的版本升级,提升了与底层区块链交互的效率和稳定性。
移除了对Levenshtein库的依赖,简化了项目的依赖关系,降低了安装和部署的复杂度。
总结
Bittensor v9.3.0版本通过增强测试覆盖率、改进区块链操作功能和优化网络性能,进一步提升了这个去中心化机器学习网络的稳定性和可用性。这些改进不仅为现有用户提供了更好的使用体验,也为未来功能的扩展奠定了坚实的基础。特别是新增的账户管理方法和子网权重处理功能,将为构建更复杂的去中心化机器学习应用提供更多可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00