Bittensor v9.3.0版本发布:增强区块链网络功能与测试覆盖
Bittensor是一个开源的区块链协议,旨在构建去中心化的机器学习网络。该项目通过区块链技术连接全球的计算资源,使机器学习模型能够以去中心化的方式进行训练和推理。最新发布的v9.3.0版本带来了一系列重要的功能增强和稳定性改进,特别是在网络测试覆盖率和区块链操作功能方面有显著提升。
测试覆盖率与稳定性提升
本次更新中,开发团队显著增强了端到端(E2E)测试的覆盖范围。新增了多个测试用例,包括对等待周期(wait_epoch)和下一个节奏(next_tempo)功能的测试验证。这些改进确保了网络在各种条件下的稳定运行,特别是在处理区块链时间相关操作时的可靠性。
测试框架现在支持所有Python版本,并增加了Docker镜像自动更新机制。这意味着开发者可以在不同Python环境下运行测试,同时保持测试环境的时效性。测试容器管理逻辑也得到了优化,新增了停止现有测试容器的功能,避免了测试环境冲突。
区块链操作功能增强
v9.3.0版本引入了多项新的区块链操作方法:
-
新增了
set_children和get_pending_children方法,用于管理子账户关系。这些方法为网络中的账户层级管理提供了更灵活的工具。 -
增加了
get_owned_hotkeys方法及其异步版本,允许用户查询特定账户拥有的所有热键(hotkeys)。这一功能对于账户管理和监控特别有用。 -
改进了CRv3(共识规则版本3)的功能实现,提升了网络的共识机制效率和可靠性。
-
优化了Balance类的魔术方法逻辑,使得代币余额的数学运算更加准确和高效。
网络功能改进
在网络安全方面,本次更新添加了drand承诺机制,增强了网络的随机数生成安全性。同时,改进了区块更新间隔(blocks_since_last_update)的返回逻辑,确保网络状态监控的准确性。
针对子网管理,新增了process_weights_for_netuid功能,允许按子网ID处理权重数据。这一改进使得大规模网络中的权重管理更加高效。
兼容性与依赖管理
v9.3.0版本增加了对Python 3.13的兼容性检查,确保项目能够在新版本Python上正常运行。同时更新了多个依赖项,包括异步substrate接口的版本升级,提升了与底层区块链交互的效率和稳定性。
移除了对Levenshtein库的依赖,简化了项目的依赖关系,降低了安装和部署的复杂度。
总结
Bittensor v9.3.0版本通过增强测试覆盖率、改进区块链操作功能和优化网络性能,进一步提升了这个去中心化机器学习网络的稳定性和可用性。这些改进不仅为现有用户提供了更好的使用体验,也为未来功能的扩展奠定了坚实的基础。特别是新增的账户管理方法和子网权重处理功能,将为构建更复杂的去中心化机器学习应用提供更多可能性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00