CUTLASS项目中make_shape与make_tile函数的区别与应用
2025-05-31 13:21:52作者:廉皓灿Ida
在NVIDIA CUTLASS高性能计算库的开发过程中,理解张量操作的基本构建块至关重要。本文将深入探讨CUTLASS中两个核心函数make_shape和make_tile的区别与应用场景,帮助开发者更高效地使用这些工具进行张量操作。
基本概念
在CUTLASS中,张量操作是构建高性能计算内核的基础。make_shape和make_tile都是用于定义张量维度和布局的重要工具,但它们在功能和使用场景上有着本质区别。
make_shape函数
make_shape函数用于创建一个简单的形状描述,它只定义张量各个维度的大小。例如:
auto shape = make_shape(16, 32); // 创建一个16x32的张量形状
make_tile函数
make_tile函数则更为复杂,它创建的是一个由布局组成的元组。当输入是整数或形状时,make_tile会将其提升为具有相同形状和左主紧凑步幅的平凡布局。
核心区别
-
功能层级:
- make_shape仅定义维度大小
- make_tile定义完整的布局信息,包括内存访问模式
-
性能影响:
- 使用make_shape(1, VPT)与make_tile(1, VPT)在功能上可能等效
- 但make_tile提供了更丰富的布局控制能力
-
使用场景:
- 简单形状定义优先使用make_shape
- 需要精确控制内存访问模式时使用make_tile
类型选择对性能的影响
在CUTLASS开发中,类型选择直接影响生成的代码效率:
// 动态整数类型 - 可能导致低效代码生成
make_shape(1, VPT);
// 编译时常量类型 - 生成更高效的代码
make_shape(Int<1>{}, Int<VPT>{});
使用编译时常量类型(如Int<1>{})能让编译器进行更好的优化,相比动态整数类型能生成更高效的机器代码。这是因为编译器可以在编译时完全展开循环和优化内存访问模式。
实际应用建议
-
简单切片操作: 当只需要对张量进行简单的分块或切片时,使用make_shape即可满足需求。
-
复杂内存访问模式: 当需要定义特定的内存访问模式或非连续访问时,应使用make_tile来精确控制布局。
-
性能关键路径: 在性能敏感区域,尽量使用编译时常量类型来定义形状和布局,以获得最佳性能。
通过深入理解这些基础构建块的区别和应用场景,开发者可以更高效地利用CUTLASS构建高性能计算内核,充分发挥硬件潜力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137