BlackSheep框架中如何跟踪请求匹配的路由模式
2025-07-04 04:50:59作者:郦嵘贵Just
在开发基于BlackSheep框架的Web应用时,我们经常需要记录请求的访问路径用于监控和日志分析。然而直接使用请求的URL路径可能会带来基数过高的问题,特别是当路径中包含动态参数时。本文将介绍如何在BlackSheep中优雅地获取和记录请求匹配的原始路由模式。
问题背景
在Web应用中,我们通常会定义路由模板如/get/:id,但实际请求的URL可能是/get/123、/get/456等。如果直接将请求URL记录到监控系统,会导致指标基数过高,影响系统性能。理想情况下,我们应该记录原始的路由模板/get/:id。
解决方案
BlackSheep框架提供了几种方法来解决这个问题:
方法一:包装路由匹配方法
我们可以通过包装路由器的get_match方法来记录匹配的路由模式:
def wrap_get_route_match(fn):
@wraps(fn)
def get_route_match(request):
match = fn(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
return get_route_match
app.router.get_match = wrap_get_route_match(app.router.get_match)
这种方法简单直接,但修改了原始方法的行为。
方法二:自定义路由器类
更优雅的方式是创建自定义路由器类:
from blacksheep import Application, Router
from blacksheep.messages import Request
from blacksheep.server.routing import RouteMatch
class TrackingRouter(Router):
def get_match(self, request: Request) -> RouteMatch | None:
match = super().get_match(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
app = Application(router=TrackingRouter())
这种方式更加面向对象,也更容易维护。
方法三:使用WeakKeyDictionary存储路由信息
如果不希望直接修改request对象,可以使用WeakKeyDictionary来存储路由信息:
import weakref
requests_routes = weakref.WeakKeyDictionary()
class TrackingRouter(Router):
def get_match(self, request: Request) -> RouteMatch | None:
match = super().get_match(request)
requests_routes[request] = match.pattern.decode() if match else "Not Found"
return match
这种方法避免了直接修改request对象,同时利用弱引用防止内存泄漏。
注意事项
- 如果使用子路由器,需要确保所有路由器都实现了相同的跟踪逻辑
- 在生产环境中,应该考虑性能影响,避免不必要的计算
- 对于404等未匹配路由的情况,应该统一处理
总结
在BlackSheep框架中跟踪请求匹配的路由模式有多种实现方式,开发者可以根据项目需求选择最适合的方法。自定义路由器类是最推荐的方式,它既保持了代码的整洁性,又提供了足够的灵活性。无论选择哪种方法,都能有效解决监控指标基数过高的问题,提升系统的可观测性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248