DeepKE项目中大模型微调时的显存优化实践
问题背景
在使用DeepKE项目进行大语言模型微调时,经常会遇到显存不足的问题。特别是在使用Llama2-13B等大型模型时,即使将batch size设置为1,仍然会出现CUDA显存不足的错误。本文记录了解决这一问题的完整过程和技术方案。
问题现象
用户在尝试使用3块GPU(每块23.64GiB显存)微调Llama2-13B模型时,遇到了典型的CUDA显存不足错误:
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 2; 23.64 GiB total capacity; 23.08 GiB already allocated; 704.00 KiB free)
即使将各种参数(如max_source_length、cutoff_len等)调至很小,问题依然存在。
解决方案探索
初步尝试
-
调整显存分配策略:通过设置环境变量
PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:1024
来优化显存分配,但效果有限。 -
参数精简:移除了不必要的
--checkpoint_dir
参数,但问题依旧。
量化技术应用
-
4-bit量化:添加
--bits 4
参数尝试进行4-bit量化,但遇到了版本兼容性问题:ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time.
-
代码更新:在DeepKE项目更新后,量化功能可以正常工作,但出现了新的BFloat16兼容性问题:
RuntimeError: "triu_tril_cuda_template" not implemented for 'BFloat16'
最终解决方案
-
Transformers版本降级:将transformers库降级到4.33.0版本解决了BFloat16兼容性问题:
pip install -U transformers==4.33.0
-
完整配置:最终的运行配置包括:
- 使用4-bit量化
- 适当的batch size和梯度累积
- 优化后的显存分配策略
- 兼容的transformers版本
技术要点总结
-
显存管理:大模型微调时,显存管理是关键。除了调整batch size外,量化技术和显存分配策略优化同样重要。
-
版本兼容性:深度学习框架和库的版本选择对模型运行有重大影响,特别是当使用较新特性时。
-
量化技术:4-bit量化可以显著减少显存占用,但需要注意实现细节和库的兼容性。
最佳实践建议
-
对于大型语言模型微调,推荐从量化技术入手,优先尝试4-bit或8-bit量化。
-
保持深度学习框架和相关库的版本稳定,避免使用过于前沿的版本,除非有特定需求。
-
在遇到显存问题时,可以尝试以下步骤:
- 降低batch size
- 增加梯度累积步数
- 应用量化技术
- 优化显存分配策略
- 检查框架版本兼容性
通过以上方法,可以在有限的计算资源下,成功完成大型语言模型的微调任务。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









