DeepKE项目中大模型微调时的显存优化实践
问题背景
在使用DeepKE项目进行大语言模型微调时,经常会遇到显存不足的问题。特别是在使用Llama2-13B等大型模型时,即使将batch size设置为1,仍然会出现CUDA显存不足的错误。本文记录了解决这一问题的完整过程和技术方案。
问题现象
用户在尝试使用3块GPU(每块23.64GiB显存)微调Llama2-13B模型时,遇到了典型的CUDA显存不足错误:
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 2; 23.64 GiB total capacity; 23.08 GiB already allocated; 704.00 KiB free)
即使将各种参数(如max_source_length、cutoff_len等)调至很小,问题依然存在。
解决方案探索
初步尝试
-
调整显存分配策略:通过设置环境变量
PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:1024来优化显存分配,但效果有限。 -
参数精简:移除了不必要的
--checkpoint_dir参数,但问题依旧。
量化技术应用
-
4-bit量化:添加
--bits 4参数尝试进行4-bit量化,但遇到了版本兼容性问题:ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time. -
代码更新:在DeepKE项目更新后,量化功能可以正常工作,但出现了新的BFloat16兼容性问题:
RuntimeError: "triu_tril_cuda_template" not implemented for 'BFloat16'
最终解决方案
-
Transformers版本降级:将transformers库降级到4.33.0版本解决了BFloat16兼容性问题:
pip install -U transformers==4.33.0 -
完整配置:最终的运行配置包括:
- 使用4-bit量化
- 适当的batch size和梯度累积
- 优化后的显存分配策略
- 兼容的transformers版本
技术要点总结
-
显存管理:大模型微调时,显存管理是关键。除了调整batch size外,量化技术和显存分配策略优化同样重要。
-
版本兼容性:深度学习框架和库的版本选择对模型运行有重大影响,特别是当使用较新特性时。
-
量化技术:4-bit量化可以显著减少显存占用,但需要注意实现细节和库的兼容性。
最佳实践建议
-
对于大型语言模型微调,推荐从量化技术入手,优先尝试4-bit或8-bit量化。
-
保持深度学习框架和相关库的版本稳定,避免使用过于前沿的版本,除非有特定需求。
-
在遇到显存问题时,可以尝试以下步骤:
- 降低batch size
- 增加梯度累积步数
- 应用量化技术
- 优化显存分配策略
- 检查框架版本兼容性
通过以上方法,可以在有限的计算资源下,成功完成大型语言模型的微调任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00