loklak_scraper_js: JavaScript 中的网页抓取器
2024-08-26 11:59:17作者:范靓好Udolf
项目介绍
loklak_scraper_js 是一个专为 loklak 设计的 JavaScript 库,旨在提供跨平台的网络抓取解决方案。该库让开发人员能够以统一的方式执行网页数据抓取任务,适用于包括 loklak_server、潜在的lokla_wok、ios 版本以及网页集成中使用的各种场景。核心思想是所有抓取逻辑应基于此处的 scraper 子目录中的共享代码基础。每个文件按目标网站命名(如 twitter.js),并应产出结构类似 loklak 搜索结果的 JSON 数据,但不包含诸如链接解缩短等由主应用实现的额外处理。
项目快速启动
要迅速投入开发或使用 loklak_scraper_js,遵循以下步骤:
# 克隆仓库到本地
git clone https://github.com/fossasia/loklak_scraper_js.git
cd loklak_scraper_js
# 安装依赖
npm install
安装完成后,你可以立即尝试运行示例脚本来观察输出:
node scrapers/example.js
此命令将输出一个简单的 JSON 对象,作为其他抓取器应模仿的基准行为。
应用案例和最佳实践
示例抓取逻辑实现
创建一个新的抓取脚本时,比如针对 Twitter 的抓取器,需按照以下模式编写:
// 假设文件名为 scrapers/twitter.js
const request = require('request');
const cheerio = require('cheerio');
exports.scrapeTwitter = function(query, callback) {
// 实现具体的抓取逻辑...
request('http://example.com/tweets?q=' + encodeURIComponent(query), function(err, res, body) {
if (!err && res.statusCode == 200) {
const $ = cheerio.load(body);
// 解析页面,提取所需数据,并构造JSON响应。
let tweets = $('div.tweet').map((i, elem) => ({
text: $(elem).find('.tweet-text').text(),
user: $(elem).find('.username').text()
})).get();
callback(null, { tweets });
} else {
callback(err);
}
});
}
最佳实践中,确保代码健壮性,错误处理机制完整,并尽量减少对目标网站服务器的压力,采用合理的请求间隔。
典型生态项目
虽然本项目主要关注于独立的抓取功能,但它在 loklak 生态系统中扮演着重要角色。例如,loklak_server 可利用这些抓取器来丰富其索引服务,通过集成本库使得数据获取更为灵活与高效。此外,前端应用或第三方服务也能借助它轻松地扩展数据来源,实现定制化信息抓取,增强各自的Web应用功能。
以上就是 loklak_scraper_js 的简明入门教程,涵盖了项目的基本概览、如何快速启动项目、应用实例及生态结合的一些建议。通过上述指南,开发者可以快速上手,有效地利用这个强大的开源工具进行网页数据抓取。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355