VoiceprintRecognition-Keras 项目使用教程
2024-09-17 23:55:25作者:曹令琨Iris
1. 项目目录结构及介绍
VoiceprintRecognition-Keras/
├── data/
│ ├── dataset/
│ └── noise/
├── model/
│ ├── model.py
│ └── utils.py
├── config/
│ └── config.py
├── train.py
├── test.py
├── README.md
└── requirements.txt
目录结构说明
-
data/: 存放数据集和噪声文件。
- dataset/: 存放语音数据集。
- noise/: 存放噪声文件。
-
model/: 存放模型相关的代码。
- model.py: 定义声纹识别模型的代码。
- utils.py: 包含一些辅助函数和工具。
-
config/: 存放配置文件。
- config.py: 项目的配置文件,包含数据路径、模型参数等配置。
-
train.py: 训练模型的启动文件。
-
test.py: 测试模型的启动文件。
-
README.md: 项目说明文档。
-
requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
train.py
train.py 是用于训练声纹识别模型的启动文件。它包含了数据加载、模型训练、保存模型等步骤。
# train.py
import os
import numpy as np
from model.model import VoiceprintModel
from config.config import Config
def main():
config = Config()
model = VoiceprintModel(config)
model.train()
if __name__ == "__main__":
main()
test.py
test.py 是用于测试声纹识别模型的启动文件。它加载训练好的模型,并对测试数据进行预测。
# test.py
import os
import numpy as np
from model.model import VoiceprintModel
from config.config import Config
def main():
config = Config()
model = VoiceprintModel(config)
model.load_model()
model.test()
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
config.py
config.py 文件包含了项目的所有配置参数,如数据路径、模型参数、训练参数等。
# config.py
class Config:
def __init__(self):
self.data_path = 'data/dataset/'
self.noise_path = 'data/noise/'
self.model_path = 'model/voiceprint_model.h5'
self.batch_size = 32
self.epochs = 50
self.learning_rate = 0.001
self.input_shape = (16000, 1)
self.num_classes = 5
配置参数说明
- data_path: 数据集路径。
- noise_path: 噪声文件路径。
- model_path: 模型保存路径。
- batch_size: 批处理大小。
- epochs: 训练轮数。
- learning_rate: 学习率。
- input_shape: 输入数据的形状。
- num_classes: 分类的类别数。
通过以上配置文件,用户可以方便地调整项目的各项参数,以适应不同的训练和测试需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178