Texera 项目教程
1. 项目介绍
Texera 是一个基于工作流的协作式机器学习中心数据分析系统。它支持可扩展的计算,并启用了先进的 AI/ML 技术。"协作"是 Texera 的一个关键焦点,它提供了一种类似于 Google Docs 的体验,但适用于数据分析。Texera 的目标是提供数据分析作为云服务,提供一个基于浏览器的 GUI 来形成工作流而无需编写代码,允许非 IT 人员进行数据分析,支持协作式数据分析,允许用户与作业的执行进行交互,并支持高效处理大量数据。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已安装以下软件:
- Java 11 或更高版本
- Maven
- Git
2.2 克隆项目
首先,克隆 Texera 项目到本地:
git clone https://github.com/Texera/texera.git
cd texera
2.3 构建项目
使用 Maven 构建项目:
mvn clean install
2.4 启动 Texera
构建完成后,启动 Texera 服务器:
cd texera-web
npm install
npm start
2.5 访问 Texera
在浏览器中访问 http://localhost:3000,即可开始使用 Texera。
3. 应用案例和最佳实践
3.1 数据清洗与预处理
Texera 可以用于大规模数据的清洗和预处理。通过使用内置的正则表达式搜索、情感分析和用户定义的 Python 函数(UDF),用户可以轻松地处理和转换数据。
3.2 机器学习模型训练
Texera 支持机器学习模型的训练和评估。用户可以通过工作流将数据导入模型,并使用可视化工具监控模型的性能。
3.3 协作式数据分析
Texera 的协作功能允许多个用户同时编辑和执行工作流。这对于团队合作和实时数据分析非常有用。
4. 典型生态项目
4.1 Apache Flink
Texera 与 Apache Flink 集成,提供了强大的流处理能力。Flink 的高吞吐量和低延迟特性使得 Texera 在处理实时数据时表现出色。
4.2 Jupyter Notebook
Texera 可以与 Jupyter Notebook 结合使用,提供交互式的数据分析环境。用户可以在 Texera 中创建工作流,并将结果导出到 Jupyter Notebook 中进行进一步分析。
4.3 TensorFlow
Texera 支持 TensorFlow 模型,用户可以在工作流中集成 TensorFlow 模型进行深度学习任务。
通过以上步骤,您可以快速上手并开始使用 Texera 进行协作式数据分析。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00