dstack项目0.19.11版本发布:全面升级Python包管理与云平台支持
dstack是一个开源的机器学习工作流编排工具,它帮助数据科学家和机器学习工程师在云平台上高效地运行和管理他们的工作负载。最新发布的0.19.11版本带来了多项重要改进,特别是在Python包管理、插件系统和云平台支持方面。
Python包管理革命:从conda到uv
本次版本最显著的改变是默认Docker镜像中移除了conda,转而采用新兴的uv工具。uv是由Astral团队开发的高性能Python包管理器,在安装大型Python包时展现出惊人的速度优势。
测试数据显示,在GCP虚拟机上安装torch包时,uv仅需32秒,而传统pip则需要2分26秒,速度提升近5倍。这种性能提升对于需要频繁安装依赖的机器学习工作流来说意义重大。
为了保持兼容性,dstack现在会自动激活一个包含pip的虚拟环境。对于仍需要conda的用户,可以通过以下命令手动安装:
wget -O miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash miniconda.sh -b -p /workflow/miniconda
eval "$(/workflow/miniconda/bin/conda shell.bash hook)"
插件系统创新:REST API插件支持
0.19.11版本引入了一个内置的rest_plugin功能,允许开发者通过API服务器的方式实现自定义插件,而不再局限于Python包形式。这种新架构带来三大优势:
- 彻底避免了与dstack核心的依赖冲突问题
- 支持使用任意编程语言开发插件
- 简化了Docker环境下的插件部署,无需扩展镜像或配置卷映射
开发者可以参考项目提供的插件服务器示例快速上手,REST插件API文档详细说明了接口规范。
云平台支持全面升级
AWS平台增强
新增对最新一代Intel Xeon Sapphire Rapids处理器的支持,包括M7i、C7i和R7i系列实例。同时加入了T3系列可突增性能实例的支持,扩展了用户的选择范围。
Azure平台优化
同样基于Intel Xeon Sapphire Rapids处理器,新增了Dsv6(通用型)和Esv6(内存优化型)系列实例。值得注意的是,Dsv3和Esv4系列实例已被标记为弃用状态。
GCP平台扩展
新增支持C4、M4、H3、N4和N2系列实例,大大丰富了计算选项。需要注意的是,部分新实例类型目前暂不支持卷存储功能,这是由于其依赖的Hyperdisk支持尚未完善。
新增示例:分布式训练实践
本次发布新增了一个Ray+RAGEN的分布式训练示例,展示了如何结合dstack和RAGEN框架在多节点环境下进行智能体微调。这个示例为需要进行大规模分布式训练的用户提供了实用参考。
向后兼容性说明
本次更新包含一个重要的破坏性变更:conda不再包含在默认Docker镜像中。用户如果需要使用conda环境,必须按照上述方法手动安装。
此外,Azure平台的Dsv3和Esv4系列实例已被标记为弃用状态,建议用户迁移到新的实例类型。
技术细节优化
除了上述主要特性外,0.19.11版本还包含多项技术改进:
- 优化了metrics命令的用户体验
- 修复了服务统计数据的请求过滤问题
- 改进了代码上传限制的错误提示信息
- 更新了Azure虚拟机镜像中的GRID驱动程序
- 移除了humanize依赖项,简化了项目依赖
这些改进共同提升了dstack的稳定性、性能和用户体验,使其成为机器学习工作流管理的更加强大和高效的工具选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00