Google Cloud Go SDK AI Platform 1.89.0版本发布:增强RAG与索引功能
Google Cloud Go SDK中的AI Platform组件近日发布了1.89.0版本,为开发者带来了多项重要更新,特别是在检索增强生成(RAG)和索引管理方面进行了功能增强。AI Platform作为Google Cloud提供的机器学习服务平台,帮助开发者轻松构建、部署和管理机器学习模型。
RAG功能增强
新版本在RAG(检索增强生成)功能方面进行了多项改进:
-
新增
include_thoughts字段:在Part消息类型中新增了该字段,允许开发者控制是否在响应中包含模型的思考过程。这一功能对于调试和理解模型推理过程特别有价值。 -
RAG作为上下文存储:现在可以将RAG作为Gemini Live API的上下文/记忆存储使用。这意味着开发者可以构建更复杂的对话系统,使模型能够记住和检索先前的交互信息,显著提升对话连贯性和上下文感知能力。
-
文档解析配置更新:对
RagFileParsingConfig消息的文档进行了更新,提供了更清晰的配置说明,帮助开发者更好地控制RAG文件的解析过程。
索引管理改进
在索引服务方面,1.89.0版本引入了重要新功能:
-
新增
ImportIndex方法:该功能被添加到IndexService中,允许开发者将外部索引导入到AI Platform中。这一功能简化了索引迁移和共享流程,使得在不同环境间转移索引变得更加便捷。 -
全局请求限制说明更新:对
ImportRagFilesConfig消息中global_max_embedding_requests_per_min字段的文档进行了更新,提供了更明确的速率限制说明,帮助开发者更好地规划和管理资源使用。
技术影响与应用场景
这些更新为开发者构建更复杂的AI应用提供了更多可能性:
-
增强的对话系统:通过RAG作为上下文存储,开发者可以构建更智能的聊天机器人,能够记住长期对话历史并提供更相关的响应。
-
高效的索引管理:
ImportIndex功能简化了索引的迁移和共享流程,特别适合需要跨项目或跨环境部署相似索引的场景。 -
更好的调试能力:
include_thoughts字段为开发者提供了洞察模型推理过程的窗口,有助于优化提示工程和模型交互。
这一系列更新体现了Google Cloud在使AI技术更易于使用和集成方面的持续努力,同时也反映了当前AI应用开发中检索增强生成技术的重要性日益增长。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00