Google Cloud Go SDK AI Platform 1.82.0版本发布:增强RAG引擎与特征视图功能
Google Cloud Go SDK中的AI Platform组件近日发布了1.82.0版本,为开发者带来了多项重要更新,特别是在检索增强生成(RAG)引擎配置和特征视图直接写入方面提供了新的API支持。AI Platform作为Google Cloud提供的机器学习服务平台,帮助开发者轻松构建、部署和管理机器学习模型。
RAG引擎配置增强
本次更新在RAG(检索增强生成)引擎方面带来了显著改进:
-
RAG引擎项目级配置:新增了RagEngineConfig资源,允许开发者在项目级别配置RAG引擎的行为。这种集中式配置管理简化了多环境部署时的配置维护工作。
-
托管数据库层级选择:通过rag_managed_db_config参数,开发者现在可以明确指定使用Basic或Enterprise级别的RAG托管数据库服务。不同层级提供不同的性能和服务级别协议,满足从开发测试到生产环境的不同需求。
-
全局配额配置:新增了对Vertex RAG引擎API的全局配额配置支持,使管理员能够更好地控制资源使用,防止意外超额使用导致的费用问题。
-
配置更新API:UpdateRagEngineConfig RPC的加入使得开发者能够动态调整RAG引擎配置,无需重新部署即可应用新的参数设置。
特征视图直接写入API
新版本引入了FeatureViewDirectWrite API,这项功能允许开发者直接将数据写入特征视图,而无需经过复杂的数据流水线。这种直接写入方式特别适合以下场景:
- 实时特征更新需求高的应用
- 需要低延迟特征服务的场景
- 简化特征工程工作流的开发
生成式AI日志预览API
1.82.0版本还包含了Gen AI日志公共预览API,这项功能为开发者提供了:
- 生成式AI模型调用的详细日志记录
- 请求和响应的追踪能力
- 使用情况分析和监控的基础
日志功能对于调试生成式AI应用、分析用户交互模式以及监控系统健康状态都至关重要。
开发者影响与升级建议
对于正在使用Google Cloud AI Platform的Go开发者来说,1.82.0版本提供了更强大的工具来控制和管理机器学习工作流。特别是那些使用RAG架构构建问答系统或知识增强应用的团队,新的配置选项将提供更精细的控制能力。
建议开发者在测试环境中先验证新API的兼容性,特别是注意RAG托管数据库层级的选择对性能和成本的影响。对于需要实时特征更新的应用,FeatureViewDirectWrite API可以显著简化架构并降低延迟。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00