Google Cloud Go SDK AI Platform 1.82.0版本发布:增强RAG引擎与特征视图功能
Google Cloud Go SDK中的AI Platform组件近日发布了1.82.0版本,为开发者带来了多项重要更新,特别是在检索增强生成(RAG)引擎配置和特征视图直接写入方面提供了新的API支持。AI Platform作为Google Cloud提供的机器学习服务平台,帮助开发者轻松构建、部署和管理机器学习模型。
RAG引擎配置增强
本次更新在RAG(检索增强生成)引擎方面带来了显著改进:
-
RAG引擎项目级配置:新增了RagEngineConfig资源,允许开发者在项目级别配置RAG引擎的行为。这种集中式配置管理简化了多环境部署时的配置维护工作。
-
托管数据库层级选择:通过rag_managed_db_config参数,开发者现在可以明确指定使用Basic或Enterprise级别的RAG托管数据库服务。不同层级提供不同的性能和服务级别协议,满足从开发测试到生产环境的不同需求。
-
全局配额配置:新增了对Vertex RAG引擎API的全局配额配置支持,使管理员能够更好地控制资源使用,防止意外超额使用导致的费用问题。
-
配置更新API:UpdateRagEngineConfig RPC的加入使得开发者能够动态调整RAG引擎配置,无需重新部署即可应用新的参数设置。
特征视图直接写入API
新版本引入了FeatureViewDirectWrite API,这项功能允许开发者直接将数据写入特征视图,而无需经过复杂的数据流水线。这种直接写入方式特别适合以下场景:
- 实时特征更新需求高的应用
- 需要低延迟特征服务的场景
- 简化特征工程工作流的开发
生成式AI日志预览API
1.82.0版本还包含了Gen AI日志公共预览API,这项功能为开发者提供了:
- 生成式AI模型调用的详细日志记录
- 请求和响应的追踪能力
- 使用情况分析和监控的基础
日志功能对于调试生成式AI应用、分析用户交互模式以及监控系统健康状态都至关重要。
开发者影响与升级建议
对于正在使用Google Cloud AI Platform的Go开发者来说,1.82.0版本提供了更强大的工具来控制和管理机器学习工作流。特别是那些使用RAG架构构建问答系统或知识增强应用的团队,新的配置选项将提供更精细的控制能力。
建议开发者在测试环境中先验证新API的兼容性,特别是注意RAG托管数据库层级的选择对性能和成本的影响。对于需要实时特征更新的应用,FeatureViewDirectWrite API可以显著简化架构并降低延迟。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~047CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









