Elastic Detection Rules项目中的MITRE ATT&CK规则更新机制优化
在Elastic Detection Rules项目中,团队最近对MITRE ATT&CK规则文件的更新机制进行了重要优化。这一改进源于对原有依赖项可靠性的重新评估,同时也体现了项目对简化工作流程和减少外部依赖的持续追求。
背景与挑战
项目中原先使用tj-actions/changed-files这一GitHub Action来检测MITRE ATT&CK规则文件的变更。这种方法虽然方便,但近期发现了一个潜在问题,促使团队需要重新评估这一依赖项的使用。特别是在对可靠性要求高的项目中,第三方依赖的稳定性尤为重要。
解决方案探索
团队考虑了两种主要解决方案路径:
-
版本更新方案:tj-actions/changed-files的最新版本(v44.5.1)已经解决了相关问题。简单地更新版本可以快速解决问题,同时保持现有工作流程不变。
-
纯Bash替代方案:通过编写简单的Bash脚本,使用git diff命令直接获取变更文件列表,再通过grep过滤出MITRE ATT&CK相关的规则文件。这种方法完全消除了对外部Action的依赖,提高了工作流的可靠性和可维护性。
技术实现细节
对于Bash替代方案,核心逻辑非常简洁明了:
CHANGED_FILES=$(git diff --name-only HEAD^ HEAD)
echo "$CHANGED_FILES" | grep -E 'detection_rules/etc/attack-v.*\.json\.gz' || echo "No MITRE Attack files changed"
这段脚本实现了:
- 使用git diff获取最近提交中变更的文件列表
- 通过grep筛选出路径匹配特定模式(MITRE ATT&CK规则文件)的变更
- 若无相关变更,则输出提示信息
可靠性最佳实践考量
值得注意的是,GitHub官方推荐将Action固定到完整的commit SHA值以提高可靠性,这与tj-actions项目的推荐做法存在差异。这种实践上的分歧也是促使团队考虑替代方案的因素之一。
决策与实施
经过评估,团队最终选择了版本更新方案作为短期解决方案,因为它能够快速解决问题且改动最小。但同时,团队也认识到纯Bash方案的长期优势,计划在未来将其作为更可靠的替代方案。
经验总结
这一优化过程体现了几个重要的工程实践原则:
- 可靠性优先:及时响应潜在问题,评估依赖项风险
- 简化架构:减少不必要的外部依赖,提高系统稳定性
- 渐进式改进:在快速修复和长期优化之间取得平衡
对于其他类似项目,这一案例也提供了有价值的参考:当依赖的第三方组件出现问题时,除了简单的版本更新外,考虑使用更基础的技术实现替代方案,可能是提高系统长期稳定性的有效途径。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









