Elastic Detection Rules项目中的MITRE ATT&CK规则更新机制优化
在Elastic Detection Rules项目中,团队最近对MITRE ATT&CK规则文件的更新机制进行了重要优化。这一改进源于对原有依赖项可靠性的重新评估,同时也体现了项目对简化工作流程和减少外部依赖的持续追求。
背景与挑战
项目中原先使用tj-actions/changed-files这一GitHub Action来检测MITRE ATT&CK规则文件的变更。这种方法虽然方便,但近期发现了一个潜在问题,促使团队需要重新评估这一依赖项的使用。特别是在对可靠性要求高的项目中,第三方依赖的稳定性尤为重要。
解决方案探索
团队考虑了两种主要解决方案路径:
-
版本更新方案:tj-actions/changed-files的最新版本(v44.5.1)已经解决了相关问题。简单地更新版本可以快速解决问题,同时保持现有工作流程不变。
-
纯Bash替代方案:通过编写简单的Bash脚本,使用git diff命令直接获取变更文件列表,再通过grep过滤出MITRE ATT&CK相关的规则文件。这种方法完全消除了对外部Action的依赖,提高了工作流的可靠性和可维护性。
技术实现细节
对于Bash替代方案,核心逻辑非常简洁明了:
CHANGED_FILES=$(git diff --name-only HEAD^ HEAD)
echo "$CHANGED_FILES" | grep -E 'detection_rules/etc/attack-v.*\.json\.gz' || echo "No MITRE Attack files changed"
这段脚本实现了:
- 使用git diff获取最近提交中变更的文件列表
- 通过grep筛选出路径匹配特定模式(MITRE ATT&CK规则文件)的变更
- 若无相关变更,则输出提示信息
可靠性最佳实践考量
值得注意的是,GitHub官方推荐将Action固定到完整的commit SHA值以提高可靠性,这与tj-actions项目的推荐做法存在差异。这种实践上的分歧也是促使团队考虑替代方案的因素之一。
决策与实施
经过评估,团队最终选择了版本更新方案作为短期解决方案,因为它能够快速解决问题且改动最小。但同时,团队也认识到纯Bash方案的长期优势,计划在未来将其作为更可靠的替代方案。
经验总结
这一优化过程体现了几个重要的工程实践原则:
- 可靠性优先:及时响应潜在问题,评估依赖项风险
- 简化架构:减少不必要的外部依赖,提高系统稳定性
- 渐进式改进:在快速修复和长期优化之间取得平衡
对于其他类似项目,这一案例也提供了有价值的参考:当依赖的第三方组件出现问题时,除了简单的版本更新外,考虑使用更基础的技术实现替代方案,可能是提高系统长期稳定性的有效途径。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00