在NVIDIA CUTLASS中实现融合矩阵乘法与外积运算的高效方案
概述
在深度学习和高性能计算领域,矩阵运算的优化一直是性能提升的关键。本文将探讨如何在NVIDIA CUTLASS库中实现一种特殊的融合运算:将矩阵乘法与外积运算合并为单一内核,以避免中间结果的全局内存读写。
问题描述
假设我们有以下三个矩阵:
- 矩阵A:维度为(m,n)
- 矩阵B:维度为(n,c)
- 矩阵C:维度为(n,d)
需要完成的计算流程是:
- 首先计算B和C的外积,得到中间结果R,维度为(n, c*d)
- 然后计算A与R的矩阵乘法,得到最终结果,维度为(m, c*d)
传统实现会先计算外积R,再计算矩阵乘法,这会导致中间结果R需要写入全局内存再读取,造成不必要的带宽消耗。
技术分析
外积与矩阵乘法的关系
外积运算实际上是矩阵乘法的一种特例。当我们将B视为形状为(1,c,n)的张量,C视为形状为(1,d,n)的张量时,它们的外积结果R可以表示为形状为(c,d,n)的张量。
计算重排
更准确的计算流程可以表示为:
- 计算R = B @ C,得到形状为(c,d,n)的张量
- 转置R得到R.T,形状为(n,c,d)
- 计算A @ R.T,得到最终结果,形状为(m,c,d)
其中n是内部(k)维度,c和d是外部维度。
实现方案
在CUTLASS中实现这种融合运算,可以考虑以下方法:
-
类似Flash Attention的实现:这种计算模式与线性注意力机制非常相似,可以借鉴Flash Attention的实现思路,去除其中的softmax和归一化步骤。
-
共享内存利用:在计算过程中,可以将B和C的块加载到共享内存中,在需要时动态计算R的相应部分,避免存储整个R矩阵。
-
连续MMA操作:也可以考虑将计算分为两个连续的矩阵乘法操作,先计算R再计算最终结果,但需要在寄存器或共享内存中保持中间结果。
性能优化建议
-
内存访问模式:由于c和d通常较小,计算外积部分的算术强度较低,应优化内存访问模式以减少带宽消耗。
-
块计算策略:对于每个n的批次,可以计算c×d的块,然后进行矩阵乘法,这种分块策略可以提高数据局部性。
-
寄存器使用:合理规划寄存器使用,确保能够高效地保持中间计算结果。
结论
在NVIDIA CUTLASS中实现矩阵乘法与外积的融合运算,可以显著减少全局内存访问,提高整体性能。通过借鉴线性注意力的实现思路,并合理利用共享内存和寄存器资源,可以构建高效的融合内核。这种优化对于需要频繁执行此类复合运算的应用场景,如某些类型的注意力机制或特殊神经网络层,将带来显著的性能提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0345- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









