Apache Doris 查询统计信息分析:SHOW QUERY STATS 详解
2025-06-27 22:53:57作者:丁柯新Fawn
概述
在数据库性能优化和查询分析中,了解历史查询对表和列的访问模式至关重要。Apache Doris 提供了 SHOW QUERY STATS 命令,用于展示历史查询对数据库表和列的命中情况。本文将深入解析这一功能的使用方法、应用场景和实际案例。
命令语法
SHOW QUERY STATS [ { [FOR <db_name>] | [FROM <table_name>] } ] [ALL] [VERBOSE];
参数详解
1. 作用范围参数
- FOR <db_name>:指定要查询的数据库名称,显示该数据库下所有表的查询统计信息
- FROM <table_name>:指定要查询的表名称,显示该表的查询统计信息
2. 显示模式参数
- ALL:显示所有索引的匹配信息(仅适用于表查询)
- VERBOSE:显示详细的匹配信息(仅适用于表查询)
这两个参数可以单独使用,也可以组合使用,但必须放在命令的最后位置。
权限要求
执行此命令需要至少具备以下权限:
| 权限类型 | 作用对象 | 说明 |
|---|---|---|
| SELECT_PRIV | DATABASE | 对查询的数据库需有SELECT权限 |
功能特点
- 统计范围:统计历史查询对数据库表和列的访问情况
- 数据持久性:统计信息在FE重启后会重置,且每个FE节点独立收集统计信息
- 统计指标:
- QueryCount:列被查询的次数
- FilterCount:列在WHERE条件中被使用的次数
- 默认行为:当不指定数据库时,显示所有数据库的查询命中情况
使用场景
1. 数据库性能优化
通过分析哪些列被频繁查询,可以优化表结构设计,将热点列放在合适的位置。
2. 索引设计参考
FilterCount高的列适合创建索引,可以显著提升查询性能。
3. 查询模式分析
了解业务查询的特征,为系统资源分配和参数调优提供依据。
实际案例解析
案例1:查看表的查询统计
SHOW QUERY STATS FROM baseall;
执行结果示例:
+-------+------------+-------------+
| Field | QueryCount | FilterCount |
+-------+------------+-------------+
| k0 | 1 | 0 |
| k1 | 1 | 0 |
| k2 | 1 | 0 |
| k3 | 1 | 0 |
| k9 | 1 | 1 |
| ... | ... | ... |
+-------+------------+-------------+
分析:可以看到k0-k3列被查询过1次,k9列不仅被查询过,还被用作过滤条件1次。
案例2:查看数据库的查询统计
SHOW QUERY STATS FOR test_query_db;
执行结果示例:
+----------------------------+------------+
| TableName | QueryCount |
+----------------------------+------------+
| baseall | 1 |
| other_table | 0 |
+----------------------------+------------+
分析:该数据库中只有baseall表被查询过1次。
案例3:使用ALL和VERBOSE参数
SHOW QUERY STATS FROM baseall ALL VERBOSE;
执行结果示例:
+-----------+-------+------------+-------------+
| IndexName | Field | QueryCount | FilterCount |
+-----------+-------+------------+-------------+
| baseall | k0 | 1 | 0 |
| | k1 | 1 | 0 |
| | ... | ... | ... |
+-----------+-------+------------+-------------+
分析:这种显示方式既包含索引信息,也包含每个字段的详细查询统计。
最佳实践建议
- 定期分析:建议定期执行此命令,了解查询模式的变化
- 结合EXPLAIN使用:分析查询统计后,可结合EXPLAIN进一步优化查询
- 关注高频列:对QueryCount高的列考虑优化存储方式
- 关注过滤列:对FilterCount高的列考虑添加合适的索引
- 多维度分析:可以按时间维度收集统计信息,分析查询模式的变化趋势
注意事项
- 统计信息仅在FE节点内存中保存,重启后会丢失
- 统计信息是累计值,无法按时间范围筛选
- 在多FE环境中,每个FE节点维护自己的统计信息
通过合理使用SHOW QUERY STATS命令,Doris用户可以深入了解查询特征,为数据库优化提供数据支持,从而提升整体系统性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
303
2.67 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
133
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
594
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
613
仓颉编译器源码及 cjdb 调试工具。
C++
123
605
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.55 K