SecretFlow拆分学习模型加载与推理实践指南
2025-07-01 10:43:23作者:凤尚柏Louis
背景介绍
SecretFlow作为隐私计算领域的重要框架,其拆分学习(Split Learning)功能为多方数据协作提供了安全高效的解决方案。在实际应用中,用户经常需要将训练好的模型保存后重新加载进行推理预测。本文将详细介绍SecretFlow中拆分学习模型的正确加载方法及常见问题解决方案。
模型保存与加载流程
在SecretFlow中完成拆分学习训练后,通常会得到三部分模型:
- 参与方Alice的基础模型(alice_base_model)
- 参与方Bob的基础模型(bob_base_model)
- 融合模型(fuse_model)
这些模型可以通过SLModel的save_model方法保存,而在推理阶段则需要正确加载这三部分模型。
常见错误分析
许多开发者在尝试加载模型进行推理时会遇到类似错误:
AttributeError: 'SLModel' object has no attribute '_base_model_dict'
这个错误通常是由于SLModel初始化参数不完整导致的。与训练阶段不同,推理阶段虽然不需要重新定义模型结构,但仍需提供必要的初始化参数。
正确的模型加载方法
正确的模型加载应遵循以下步骤:
- 首先初始化SecretFlow环境
import secretflow as sf
sf.init(['alice', 'bob'], address='local')
alice, bob = sf.PYU('alice'), sf.PYU('bob')
- 准备预测数据
file_dict = {alice:'alice_data.csv', bob:'bob_data.csv'}
data = sf.data.vertical.read_csv(file_dict)
- 初始化SLModel时提供必要参数
sl_model = SLModel(
base_model_dict={
alice: None,
bob: None
},
backend="tensorflow",
strategy="split_nn",
device_y=alice
)
- 加载已保存的模型
base_model_path = {alice:'alice_base_model', bob:'bob_base_model'}
fuse_model_path = 'fuse_model'
sl_model.load_model(base_model_path=base_model_path, fuse_model_path=fuse_model_path)
- 执行预测
predictions = sl_model.predict(data)
关键注意事项
-
初始化参数完整性:即使只用于推理,SLModel初始化时仍需提供base_model_dict、backend和strategy等关键参数。
-
模型路径映射:base_model_path需要正确映射到各参与方的PYU对象。
-
数据一致性:预测数据的特征列必须与训练时完全一致,包括顺序和数据类型。
-
环境一致性:推理环境应与训练环境保持一致,包括SecretFlow版本和各参与方配置。
进阶建议
对于生产环境部署,建议:
- 将模型加载逻辑封装为单独的函数或类
- 添加模型版本控制机制
- 实现输入数据的完整性校验
- 考虑添加模型性能监控
通过遵循上述实践方法,可以确保SecretFlow拆分学习模型能够被正确加载并用于推理任务,同时保证预测过程的隐私安全性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869