geeup 项目使用教程
1. 项目介绍
geeup 是一个用于批量上传图像和表格资产到 Google Earth Engine (GEE) 的命令行工具。该项目旨在为开源地理空间用户提供一个简单易用的工具,以便他们能够轻松地预处理图像和 shapefile,并处理所有当前在 GEE 上可能的上传格式。geeup 提供了多种功能,包括批量上传、任务状态监控、配额查询等。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本,并且已经安装了 earthengine CLI 工具并完成了认证。然后,你可以使用以下命令安装 geeup:
pip install geeup
2.2 基本使用
以下是一些基本的 geeup 命令示例:
2.2.1 查询 GEE 配额
geeup quota
2.2.2 上传图像
geeup upload --source "path/to/images" --dest "users/username/mycollection" --metadata "path/to/metadata.csv"
2.2.3 上传表格(shapefile 或 CSV)
geeup tabup --source "path/to/zipped_shapefiles_or_csv" --dest "users/username/myfolder"
2.2.4 查看任务状态
geeup tasks
3. 应用案例和最佳实践
3.1 批量上传遥感图像
假设你有一批 Landsat 8 图像需要上传到 GEE,你可以使用 geeup 工具轻松完成这一任务。首先,确保所有图像文件位于同一个目录中,然后运行以下命令:
geeup upload --source "path/to/landsat8_images" --dest "users/username/landsat8_collection" --metadata "path/to/metadata.csv"
3.2 上传 shapefile 进行地理分析
如果你有一些 shapefile 文件需要上传到 GEE 进行地理分析,可以使用以下命令:
geeup tabup --source "path/to/zipped_shapefiles" --dest "users/username/shapefiles_folder"
3.3 监控上传任务
在批量上传过程中,监控任务状态是非常重要的。你可以使用以下命令查看当前所有任务的状态:
geeup tasks
4. 典型生态项目
4.1 Google Earth Engine (GEE)
geeup 是基于 Google Earth Engine (GEE) 的生态系统开发的工具。GEE 是一个强大的地理空间分析平台,提供了大量的遥感数据和分析工具。geeup 使得用户能够更方便地将本地数据上传到 GEE 进行进一步分析。
4.2 GDAL
geeup 依赖于 GDAL 库来处理地理空间数据。GDAL 是一个开源的地理空间数据处理库,支持多种格式的地理数据读写。
4.3 geeadd
geeadd 是另一个与 GEE 相关的开源项目,提供了一些额外的功能,如配额估计、任务监控和取消等。geeup 借鉴了 geeadd 的一些功能,并在此基础上进行了扩展。
通过以上教程,你应该能够快速上手使用 geeup 工具,并将其应用于实际的地理空间数据处理任务中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00