geeup 项目使用教程
1. 项目介绍
geeup 是一个用于批量上传图像和表格资产到 Google Earth Engine (GEE) 的命令行工具。该项目旨在为开源地理空间用户提供一个简单易用的工具,以便他们能够轻松地预处理图像和 shapefile,并处理所有当前在 GEE 上可能的上传格式。geeup 提供了多种功能,包括批量上传、任务状态监控、配额查询等。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本,并且已经安装了 earthengine CLI 工具并完成了认证。然后,你可以使用以下命令安装 geeup:
pip install geeup
2.2 基本使用
以下是一些基本的 geeup 命令示例:
2.2.1 查询 GEE 配额
geeup quota
2.2.2 上传图像
geeup upload --source "path/to/images" --dest "users/username/mycollection" --metadata "path/to/metadata.csv"
2.2.3 上传表格(shapefile 或 CSV)
geeup tabup --source "path/to/zipped_shapefiles_or_csv" --dest "users/username/myfolder"
2.2.4 查看任务状态
geeup tasks
3. 应用案例和最佳实践
3.1 批量上传遥感图像
假设你有一批 Landsat 8 图像需要上传到 GEE,你可以使用 geeup 工具轻松完成这一任务。首先,确保所有图像文件位于同一个目录中,然后运行以下命令:
geeup upload --source "path/to/landsat8_images" --dest "users/username/landsat8_collection" --metadata "path/to/metadata.csv"
3.2 上传 shapefile 进行地理分析
如果你有一些 shapefile 文件需要上传到 GEE 进行地理分析,可以使用以下命令:
geeup tabup --source "path/to/zipped_shapefiles" --dest "users/username/shapefiles_folder"
3.3 监控上传任务
在批量上传过程中,监控任务状态是非常重要的。你可以使用以下命令查看当前所有任务的状态:
geeup tasks
4. 典型生态项目
4.1 Google Earth Engine (GEE)
geeup 是基于 Google Earth Engine (GEE) 的生态系统开发的工具。GEE 是一个强大的地理空间分析平台,提供了大量的遥感数据和分析工具。geeup 使得用户能够更方便地将本地数据上传到 GEE 进行进一步分析。
4.2 GDAL
geeup 依赖于 GDAL 库来处理地理空间数据。GDAL 是一个开源的地理空间数据处理库,支持多种格式的地理数据读写。
4.3 geeadd
geeadd 是另一个与 GEE 相关的开源项目,提供了一些额外的功能,如配额估计、任务监控和取消等。geeup 借鉴了 geeadd 的一些功能,并在此基础上进行了扩展。
通过以上教程,你应该能够快速上手使用 geeup 工具,并将其应用于实际的地理空间数据处理任务中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00