geeup 项目使用教程
1. 项目介绍
geeup 是一个用于批量上传图像和表格资产到 Google Earth Engine (GEE) 的命令行工具。该项目旨在为开源地理空间用户提供一个简单易用的工具,以便他们能够轻松地预处理图像和 shapefile,并处理所有当前在 GEE 上可能的上传格式。geeup 提供了多种功能,包括批量上传、任务状态监控、配额查询等。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本,并且已经安装了 earthengine CLI 工具并完成了认证。然后,你可以使用以下命令安装 geeup:
pip install geeup
2.2 基本使用
以下是一些基本的 geeup 命令示例:
2.2.1 查询 GEE 配额
geeup quota
2.2.2 上传图像
geeup upload --source "path/to/images" --dest "users/username/mycollection" --metadata "path/to/metadata.csv"
2.2.3 上传表格(shapefile 或 CSV)
geeup tabup --source "path/to/zipped_shapefiles_or_csv" --dest "users/username/myfolder"
2.2.4 查看任务状态
geeup tasks
3. 应用案例和最佳实践
3.1 批量上传遥感图像
假设你有一批 Landsat 8 图像需要上传到 GEE,你可以使用 geeup 工具轻松完成这一任务。首先,确保所有图像文件位于同一个目录中,然后运行以下命令:
geeup upload --source "path/to/landsat8_images" --dest "users/username/landsat8_collection" --metadata "path/to/metadata.csv"
3.2 上传 shapefile 进行地理分析
如果你有一些 shapefile 文件需要上传到 GEE 进行地理分析,可以使用以下命令:
geeup tabup --source "path/to/zipped_shapefiles" --dest "users/username/shapefiles_folder"
3.3 监控上传任务
在批量上传过程中,监控任务状态是非常重要的。你可以使用以下命令查看当前所有任务的状态:
geeup tasks
4. 典型生态项目
4.1 Google Earth Engine (GEE)
geeup 是基于 Google Earth Engine (GEE) 的生态系统开发的工具。GEE 是一个强大的地理空间分析平台,提供了大量的遥感数据和分析工具。geeup 使得用户能够更方便地将本地数据上传到 GEE 进行进一步分析。
4.2 GDAL
geeup 依赖于 GDAL 库来处理地理空间数据。GDAL 是一个开源的地理空间数据处理库,支持多种格式的地理数据读写。
4.3 geeadd
geeadd 是另一个与 GEE 相关的开源项目,提供了一些额外的功能,如配额估计、任务监控和取消等。geeup 借鉴了 geeadd 的一些功能,并在此基础上进行了扩展。
通过以上教程,你应该能够快速上手使用 geeup 工具,并将其应用于实际的地理空间数据处理任务中。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00