在pyecharts中实现Grid多子图独立Y轴缩放控制
2025-05-14 11:34:03作者:柏廷章Berta
背景介绍
pyecharts是基于ECharts的Python可视化库,提供了丰富的图表类型和交互功能。在实际数据可视化项目中,经常需要将多个图表组合在一起展示,同时保持各自独立的交互控制能力。本文将深入探讨如何在pyecharts的Grid布局中实现多子图独立Y轴缩放控制的技术方案。
Grid布局的基本使用
Grid是pyecharts中用于组合多个图表的容器组件,它可以将多个图表按照网格布局排列在同一个画布上。默认情况下,Grid中的图表会共享一些交互控制,如datazoom(数据区域缩放)工具。
from pyecharts.charts import Grid, Line
from pyecharts import options as opts
# 创建两个折线图
line1 = Line().add_xaxis([...]).add_yaxis(...)
line2 = Line().add_xaxis([...]).add_yaxis(...)
# 使用Grid组合
grid = Grid()
grid.add(line1, grid_opts=opts.GridOpts(pos_left="5%", pos_right="55%", pos_top="5%"))
grid.add(line2, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="5%"))
独立Y轴缩放的需求
在实际项目中,我们经常遇到以下需求:
- X轴需要保持联动缩放(时间轴同步)
- 每个子图的Y轴需要独立控制缩放
- 既要有滑块式的datazoom,也要有工具箱中的缩放按钮
技术实现方案
1. 配置多个datazoom组件
通过配置多个datazoom组件,可以实现X轴联动和Y轴独立控制:
def configure_multiple_datazoom(n):
index_list = list(range(n))
return [
# X轴滑块
opts.DataZoomOpts(is_show=True, type_="slider", xaxis_index=index_list),
# X轴内置缩放
opts.DataZoomOpts(is_show=True, type_="inside", xaxis_index=index_list),
# 第一个Y轴滑块
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[0],
orient="vertical"
),
# 最后一个Y轴滑块
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[-1],
orient="vertical"
),
]
2. 工具箱中的独立缩放控制
工具箱中的datazoom工具默认会作用于所有图表,要实现独立控制,需要明确指定yAxisIndex:
toolbox_opts=opts.ToolboxOpts(
is_show=True,
feature={
"dataZoom": {"xAxisIndex": False, "yAxisIndex": [0, 2]}, # 只控制第1和第3个子图
"restore": {},
"saveAsImage": {},
},
)
完整示例代码
下面是一个完整的实现多子图独立Y轴缩放的示例:
from pyecharts import options as opts
from pyecharts.charts import Grid, Line
import pandas as pd
import numpy as np
def plot_multivariate(source):
line = Line()
line.add_xaxis(source["ts"].tolist())
for col in source.columns:
if col != "ts":
line.add_yaxis(col, source[col].tolist())
return line
def plot_multivariate_multisource(title, *sources):
grid = Grid(opts.InitOpts(width="100%", page_title=title))
n = len(sources)
for i, source in enumerate(sources):
line = plot_multivariate(source)
grid.add(line, grid_opts=opts.GridOpts(
pos_top=f"{10 + i*30}%",
height="25%"
))
# 配置datazoom
index_list = list(range(n))
grid.set_global_opts(
datazoom_opts=[
opts.DataZoomOpts(is_show=True, type_="slider", xaxis_index=index_list),
opts.DataZoomOpts(is_show=True, type_="inside", xaxis_index=index_list),
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[0],
orient="vertical"
),
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[-1],
orient="vertical"
),
],
toolbox_opts=opts.ToolboxOpts(
is_show=True,
feature={
"dataZoom": {"xAxisIndex": False, "yAxisIndex": index_list},
"restore": {},
"saveAsImage": {},
},
),
)
return grid
# 生成示例数据
ts = np.arange(0, 5000, 40)
data1 = pd.DataFrame({
"ts": ts,
"value1": np.random.rand(len(ts)),
"value2": np.random.rand(len(ts)) * 2
})
data2 = pd.DataFrame({
"ts": np.arange(0, 10000, 1000),
"value": np.random.rand(10) * 10
})
# 绘制图表
chart = plot_multivariate_multisource("多子图独立Y轴缩放", data1, data2)
chart.render()
技术要点总结
- 多datazoom配置:通过配置多个datazoom组件,分别控制X轴和Y轴的缩放行为
- 方向设置:Y轴滑块需要设置
orient="vertical"参数 - 索引控制:通过
xaxis_index和yaxis_index参数精确控制作用范围 - 工具箱定制:在工具箱中明确指定
yAxisIndex可以实现对特定子图的独立控制
实际应用建议
- 对于时间序列数据,保持X轴联动可以更好地对比不同指标的变化趋势
- Y轴独立控制适合展示量纲差异较大的多指标数据
- 滑块式datazoom适合精确控制,工具箱中的缩放按钮适合快速操作
- 在子图数量较多时,可以考虑只显示关键子图的Y轴滑块,避免界面过于拥挤
通过本文介绍的技术方案,开发者可以在pyecharts中灵活实现多子图组合展示与独立交互控制,满足复杂数据可视化场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217