在pyecharts中实现Grid多子图独立Y轴缩放控制
2025-05-14 08:39:56作者:柏廷章Berta
背景介绍
pyecharts是基于ECharts的Python可视化库,提供了丰富的图表类型和交互功能。在实际数据可视化项目中,经常需要将多个图表组合在一起展示,同时保持各自独立的交互控制能力。本文将深入探讨如何在pyecharts的Grid布局中实现多子图独立Y轴缩放控制的技术方案。
Grid布局的基本使用
Grid是pyecharts中用于组合多个图表的容器组件,它可以将多个图表按照网格布局排列在同一个画布上。默认情况下,Grid中的图表会共享一些交互控制,如datazoom(数据区域缩放)工具。
from pyecharts.charts import Grid, Line
from pyecharts import options as opts
# 创建两个折线图
line1 = Line().add_xaxis([...]).add_yaxis(...)
line2 = Line().add_xaxis([...]).add_yaxis(...)
# 使用Grid组合
grid = Grid()
grid.add(line1, grid_opts=opts.GridOpts(pos_left="5%", pos_right="55%", pos_top="5%"))
grid.add(line2, grid_opts=opts.GridOpts(pos_left="55%", pos_right="5%", pos_top="5%"))
独立Y轴缩放的需求
在实际项目中,我们经常遇到以下需求:
- X轴需要保持联动缩放(时间轴同步)
- 每个子图的Y轴需要独立控制缩放
- 既要有滑块式的datazoom,也要有工具箱中的缩放按钮
技术实现方案
1. 配置多个datazoom组件
通过配置多个datazoom组件,可以实现X轴联动和Y轴独立控制:
def configure_multiple_datazoom(n):
index_list = list(range(n))
return [
# X轴滑块
opts.DataZoomOpts(is_show=True, type_="slider", xaxis_index=index_list),
# X轴内置缩放
opts.DataZoomOpts(is_show=True, type_="inside", xaxis_index=index_list),
# 第一个Y轴滑块
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[0],
orient="vertical"
),
# 最后一个Y轴滑块
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[-1],
orient="vertical"
),
]
2. 工具箱中的独立缩放控制
工具箱中的datazoom工具默认会作用于所有图表,要实现独立控制,需要明确指定yAxisIndex:
toolbox_opts=opts.ToolboxOpts(
is_show=True,
feature={
"dataZoom": {"xAxisIndex": False, "yAxisIndex": [0, 2]}, # 只控制第1和第3个子图
"restore": {},
"saveAsImage": {},
},
)
完整示例代码
下面是一个完整的实现多子图独立Y轴缩放的示例:
from pyecharts import options as opts
from pyecharts.charts import Grid, Line
import pandas as pd
import numpy as np
def plot_multivariate(source):
line = Line()
line.add_xaxis(source["ts"].tolist())
for col in source.columns:
if col != "ts":
line.add_yaxis(col, source[col].tolist())
return line
def plot_multivariate_multisource(title, *sources):
grid = Grid(opts.InitOpts(width="100%", page_title=title))
n = len(sources)
for i, source in enumerate(sources):
line = plot_multivariate(source)
grid.add(line, grid_opts=opts.GridOpts(
pos_top=f"{10 + i*30}%",
height="25%"
))
# 配置datazoom
index_list = list(range(n))
grid.set_global_opts(
datazoom_opts=[
opts.DataZoomOpts(is_show=True, type_="slider", xaxis_index=index_list),
opts.DataZoomOpts(is_show=True, type_="inside", xaxis_index=index_list),
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[0],
orient="vertical"
),
opts.DataZoomOpts(
is_show=True,
type_="slider",
yaxis_index=index_list[-1],
orient="vertical"
),
],
toolbox_opts=opts.ToolboxOpts(
is_show=True,
feature={
"dataZoom": {"xAxisIndex": False, "yAxisIndex": index_list},
"restore": {},
"saveAsImage": {},
},
),
)
return grid
# 生成示例数据
ts = np.arange(0, 5000, 40)
data1 = pd.DataFrame({
"ts": ts,
"value1": np.random.rand(len(ts)),
"value2": np.random.rand(len(ts)) * 2
})
data2 = pd.DataFrame({
"ts": np.arange(0, 10000, 1000),
"value": np.random.rand(10) * 10
})
# 绘制图表
chart = plot_multivariate_multisource("多子图独立Y轴缩放", data1, data2)
chart.render()
技术要点总结
- 多datazoom配置:通过配置多个datazoom组件,分别控制X轴和Y轴的缩放行为
- 方向设置:Y轴滑块需要设置
orient="vertical"参数 - 索引控制:通过
xaxis_index和yaxis_index参数精确控制作用范围 - 工具箱定制:在工具箱中明确指定
yAxisIndex可以实现对特定子图的独立控制
实际应用建议
- 对于时间序列数据,保持X轴联动可以更好地对比不同指标的变化趋势
- Y轴独立控制适合展示量纲差异较大的多指标数据
- 滑块式datazoom适合精确控制,工具箱中的缩放按钮适合快速操作
- 在子图数量较多时,可以考虑只显示关键子图的Y轴滑块,避免界面过于拥挤
通过本文介绍的技术方案,开发者可以在pyecharts中灵活实现多子图组合展示与独立交互控制,满足复杂数据可视化场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.31 K
暂无简介
Dart
622
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
794
77