神经组合优化与强化学习的PyTorch实现教程
2024-08-17 02:02:46作者:邵娇湘
项目介绍
本项目是基于PyTorch实现的神经组合优化与强化学习(Neural Combinatorial Optimization with Reinforcement Learning)。该项目主要解决旅行商问题(TSP),通过使用递归神经网络和策略梯度方法,预测城市坐标的最优排列。项目源码托管在GitHub上,地址为:https://github.com/pemami4911/neural-combinatorial-rl-pytorch。
项目快速启动
环境配置
首先,确保你已经安装了Python和PyTorch。你可以通过以下命令安装PyTorch:
pip install torch torchvision
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/pemami4911/neural-combinatorial-rl-pytorch.git
cd neural-combinatorial-rl-pytorch
运行示例
项目中包含一个示例脚本main.sh
,你可以通过运行该脚本来快速启动项目:
bash main.sh
应用案例和最佳实践
旅行商问题(TSP)
旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商访问所有城市并返回起点。本项目通过强化学习方法,训练神经网络来预测最优路径。
最佳实践
- 数据准备:确保你有足够的数据集来训练模型,数据集应包含城市坐标信息。
- 模型训练:使用
trainer.py
脚本进行模型训练,调整超参数以获得最佳性能。 - 评估与测试:使用
tsp_task.py
脚本进行模型评估和测试,确保模型在未见过的数据上表现良好。
典型生态项目
相关项目
- 神经组合优化与强化学习的TensorFlow实现:https://github.com/MichelDeudon/neural-combinatorial-optimization-rl-tensorflow
- PointerNet:https://github.com/shirgur/PointerNet
- HRL-for-combinatorial-optimization:https://github.com/qiang-ma/HRL-for-combinatorial-optimization
这些项目与本项目在解决组合优化问题上有相似之处,可以相互参考和借鉴。
通过以上内容,你可以快速了解并启动neural-combinatorial-rl-pytorch
项目,并探索其在组合优化问题中的应用。希望本教程对你有所帮助!
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0