Sloth项目中SLO仪表板NaN问题的分析与解决方案
问题背景
在使用Sloth项目的SLO规范与仪表板时,开发人员遇到了一个常见但棘手的问题:在Grafana仪表板中出现了NaN(非数字)值的显示。这种情况特别容易发生在系统刚部署或流量较低的时段,尤其是在使用5分钟SLI窗口的情况下。
问题本质分析
NaN值的出现源于PromQL查询的特殊性。当监控系统没有收到任何流量时,某些查询会返回NaN结果。具体到Sloth项目,当错误查询(error_query)和总查询(total_query)的比值为0/0时,Prometheus会返回NaN。这种情况在短时间窗口(如5分钟)内尤为常见。
技术解决方案
经过社区讨论和技术验证,目前有以下几种解决方案:
-
基础查询修正法: 在总查询(total_query)中添加保护条件,确保分母永远不会为零。例如:
(sum(rate(nginx_requests{path="/auth",service="myservice"}[{{.window}}])) >0) or on() vector(1) -
仪表板查询修正法: 直接修改仪表板中的查询表达式,添加类似的保护条件:
slo:period_error_budget_remaining:ratio{sloth_service="${service}", sloth_slo="${slo}"} >0 or on() vector(1)
技术细节解析
-
on()操作符的作用:
on()操作符在PromQL中用于指定标签匹配条件。在表达式(up{instance="x"} > 0) or on() vector(1)中,on()确保只产生一个时间序列,而不是多个。这对于SLO计算至关重要,因为它保证了结果的唯一性。 -
vector(1)的含义:
vector(1)创建一个值为1的瞬时向量,当主查询条件不满足时作为默认值返回。这确保了即使在没有流量的情况下,查询也不会返回NaN。 -
负值问题: 在某些情况下,修正后可能出现负百分比值(如-448%)。这通常表示错误预算已经被严重透支,系统性能远低于SLO目标。这种情况需要引起重视,可能表明系统存在严重问题。
最佳实践建议
-
对于新部署的系统,建议在Sloth规范中预先添加保护条件,而不是等问题出现后再修正。
-
对于短时间窗口(如5分钟)的SLO监控,更需要注意NaN问题的预防,因为短窗口更容易出现零流量的情况。
-
当修改查询条件后,可能需要等待一个完整的窗口周期(如30天)才能完全消除历史NaN值的影响。在此期间,可以考虑临时重命名或重新标记SLO以获取准确数据。
-
定期检查SLO仪表板,特别关注负百分比值,这可能是系统性能问题的早期预警信号。
通过理解这些技术细节和解决方案,开发人员可以更有效地使用Sloth项目进行SLO监控,避免NaN值带来的困扰,获得更准确可靠的系统性能指标。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00