Transformers-for-NLP 第二版教程
2024-08-10 02:47:53作者:幸俭卉
项目介绍
Transformers-for-NLP
第二版是一个深入探讨自然语言处理(NLP)中Transformer模型的开源项目。该项目涵盖了从BERT到GPT-4的多种Transformer模型,并提供了在不同NLP平台(如Hugging Face、OpenAI API、Trax和AllenNLP)上的应用示例。此外,项目还包括了ChatGPT、GPT-3.5-turbo、GPT-4以及DALL-E的图像生成等高级功能。
项目快速启动
安装依赖
首先,克隆项目仓库并安装必要的依赖包:
git clone https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition.git
cd Transformers-for-NLP-2nd-Edition
pip install -r requirements.txt
运行示例代码
以下是一个简单的示例代码,展示了如何使用Hugging Face的Transformer库进行文本分类:
from transformers import pipeline
# 初始化一个文本分类器
classifier = pipeline('sentiment-analysis')
# 进行文本分类
result = classifier("I love using transformers for NLP tasks!")
print(result)
应用案例和最佳实践
情感分析
使用Transformer模型进行情感分析是NLP中的一个常见任务。以下是一个使用BERT模型的示例:
from transformers import BertTokenizer, BertForSequenceClassification
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0) # 标签
outputs = model(**inputs, labels=labels)
loss = outputs.loss
logits = outputs.logits
文本生成
使用GPT-3进行文本生成是另一个常见的应用场景:
from transformers import GPT3Tokenizer, GPT3LMHeadModel
tokenizer = GPT3Tokenizer.from_pretrained("gpt3")
model = GPT3LMHeadModel.from_pretrained("gpt3")
inputs = tokenizer("Once upon a time", return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
典型生态项目
Hugging Face Transformers
Hugging Face的Transformers库是NLP领域中最流行的库之一,提供了大量的预训练模型和工具。
OpenAI API
OpenAI API提供了对GPT-3和GPT-4的访问,可以用于各种文本生成和理解任务。
AllenNLP
AllenNLP是一个基于PyTorch的NLP研究库,提供了许多高级的NLP功能和模型。
通过这些生态项目,开发者可以更高效地构建和部署NLP应用。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399