T-LOAM 项目安装与使用指南
2024-09-25 04:42:18作者:房伟宁
1. 项目介绍
T-LOAM 是一个基于截断最小二乘法(Truncated Least Squares)的纯激光雷达(Lidar-only)里程计和建图框架,具有高性能和实时处理能力。该项目首次将 Open3D 点云库集成到 SLAM 算法框架中,主要改进包括:
- 快速且精确的预处理模块
- 多区域地面提取和动态曲面体素聚类
- 基于主成分分析(PCA)的特征提取,包括平面特征、地面特征、边缘特征和球面特征
- 基于截断最小二乘法的三种残差函数,用于直接处理上述特征(点对点、点对线、点对面)
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- ROS (Melodic Ubuntu18.04)
- YAML (0.6.3)
- Open3D (0.12.0)
- Ceres Solver (2.0)
2.2 安装步骤
-
创建 Catkin 工作空间
mkdir -p ~/tloam_ws/src cd ~/tloam_ws catkin init catkin config --merge-devel catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release -
克隆项目
cd src git clone https://github.com/zpw6106/tloam.git -
编译项目
catkin build
2.3 运行示例
下载 KITTI Odometry 数据集,并按照以下结构组织数据,然后修改 config/kitti/kitti_reader.yaml 中的读取路径。
roslaunch tloam tloam_kitti.launch
3. 应用案例和最佳实践
3.1 应用案例
T-LOAM 在 KITTI 数据集上的表现优于 F-LOAM,尤其是在纯里程计(无回环校正)的情况下,T-LOAM 的漂移更小。以下是 KITTI 序列 00 的评估结果:
- F-LOAM:
- 平移误差: 1.11%
- 相对误差 (°/100m): 0.40
- T-LOAM:
- 平移误差: 0.98%
- 相对误差 (°/100m): 0.60
3.2 最佳实践
- 特征提取优化: 根据实际应用场景调整特征提取参数,以提高里程计的精度和鲁棒性。
- 多传感器融合: 结合其他传感器(如 IMU)进行数据融合,进一步提升系统的稳定性和精度。
4. 典型生态项目
4.1 SC-TLOAM
SC-TLOAM 是一个实时 LiDAR SLAM 包,集成了 TLOAM 和 ScanContext。TLOAM 用于里程计,ScanContext 用于粗略的全局定位,能够处理大漂移问题(即绑架机器人问题,无需初始姿态)。
4.2 A-LOAM 和 TEASER
T-LOAM 的开发参考了 A-LOAM 和 TEASER 项目,这些项目在激光雷达里程计和建图领域也有广泛的应用和贡献。
通过以上步骤,你可以快速启动并使用 T-LOAM 项目,结合实际应用场景进行优化和扩展。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322