T-LOAM 项目安装与使用指南
2024-09-25 16:40:27作者:房伟宁
1. 项目介绍
T-LOAM 是一个基于截断最小二乘法(Truncated Least Squares)的纯激光雷达(Lidar-only)里程计和建图框架,具有高性能和实时处理能力。该项目首次将 Open3D 点云库集成到 SLAM 算法框架中,主要改进包括:
- 快速且精确的预处理模块
- 多区域地面提取和动态曲面体素聚类
- 基于主成分分析(PCA)的特征提取,包括平面特征、地面特征、边缘特征和球面特征
- 基于截断最小二乘法的三种残差函数,用于直接处理上述特征(点对点、点对线、点对面)
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- ROS (Melodic Ubuntu18.04)
- YAML (0.6.3)
- Open3D (0.12.0)
- Ceres Solver (2.0)
2.2 安装步骤
-
创建 Catkin 工作空间
mkdir -p ~/tloam_ws/src cd ~/tloam_ws catkin init catkin config --merge-devel catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release -
克隆项目
cd src git clone https://github.com/zpw6106/tloam.git -
编译项目
catkin build
2.3 运行示例
下载 KITTI Odometry 数据集,并按照以下结构组织数据,然后修改 config/kitti/kitti_reader.yaml 中的读取路径。
roslaunch tloam tloam_kitti.launch
3. 应用案例和最佳实践
3.1 应用案例
T-LOAM 在 KITTI 数据集上的表现优于 F-LOAM,尤其是在纯里程计(无回环校正)的情况下,T-LOAM 的漂移更小。以下是 KITTI 序列 00 的评估结果:
- F-LOAM:
- 平移误差: 1.11%
- 相对误差 (°/100m): 0.40
- T-LOAM:
- 平移误差: 0.98%
- 相对误差 (°/100m): 0.60
3.2 最佳实践
- 特征提取优化: 根据实际应用场景调整特征提取参数,以提高里程计的精度和鲁棒性。
- 多传感器融合: 结合其他传感器(如 IMU)进行数据融合,进一步提升系统的稳定性和精度。
4. 典型生态项目
4.1 SC-TLOAM
SC-TLOAM 是一个实时 LiDAR SLAM 包,集成了 TLOAM 和 ScanContext。TLOAM 用于里程计,ScanContext 用于粗略的全局定位,能够处理大漂移问题(即绑架机器人问题,无需初始姿态)。
4.2 A-LOAM 和 TEASER
T-LOAM 的开发参考了 A-LOAM 和 TEASER 项目,这些项目在激光雷达里程计和建图领域也有广泛的应用和贡献。
通过以上步骤,你可以快速启动并使用 T-LOAM 项目,结合实际应用场景进行优化和扩展。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869